論文の概要: Stability of Graph Convolutional Neural Networks through the lens of
small perturbation analysis
- arxiv url: http://arxiv.org/abs/2312.12934v1
- Date: Wed, 20 Dec 2023 11:20:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 15:50:33.514482
- Title: Stability of Graph Convolutional Neural Networks through the lens of
small perturbation analysis
- Title(参考訳): 小摂動解析用レンズによるグラフ畳み込みニューラルネットワークの安定性
- Authors: Lucia Testa, Claudio Battiloro, Stefania Sardellitti, Sergio
Barbarossa
- Abstract要約: 基礎となるグラフトポロジにおけるランダムな小摂動下でのグラフ畳み込みニューラルネットワーク(GCN)の安定性の問題について検討する。
我々は、未摂動GCNの出力と摂動GCNの出力の予測差に基づいて、小説を導出する。
- 参考スコア(独自算出の注目度): 16.345333007563333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study the problem of stability of Graph Convolutional Neural
Networks (GCNs) under random small perturbations in the underlying graph
topology, i.e. under a limited number of insertions or deletions of edges. We
derive a novel bound on the expected difference between the outputs of
unperturbed and perturbed GCNs. The proposed bound explicitly depends on the
magnitude of the perturbation of the eigenpairs of the Laplacian matrix, and
the perturbation explicitly depends on which edges are inserted or deleted.
Then, we provide a quantitative characterization of the effect of perturbing
specific edges on the stability of the network. We leverage tools from small
perturbation analysis to express the bounds in closed, albeit approximate,
form, in order to enhance interpretability of the results, without the need to
compute any perturbed shift operator. Finally, we numerically evaluate the
effectiveness of the proposed bound.
- Abstract(参考訳): 本研究では,下層のグラフトポロジーにおけるランダムな小さな摂動,すなわちエッジの挿入や削除の数の制限下でのグラフ畳み込みニューラルネットワーク(gcns)の安定性の問題について検討する。
我々は、未摂動GCNの出力と摂動GCNの出力の予測差に基づいて、小説を導出する。
提案した境界はラプラシアン行列の固有ペアの摂動の大きさに明示的に依存し、摂動はどの辺が挿入されるか削除されるかに明示的に依存する。
次に,ネットワークの安定性に対する特定のエッジの摂動の影響を定量的に評価する。
我々は,小さな摂動解析から得られたツールを用いて,閉,近似,形式の境界を表現し,摂動シフト演算子を計算することなく,結果の解釈可能性を高める。
最後に,提案手法の有効性を数値的に評価する。
関連論文リスト
- Non Commutative Convolutional Signal Models in Neural Networks:
Stability to Small Deformations [111.27636893711055]
非可換畳み込みフィルタのフィルタ特性と安定性について検討する。
この結果は,グループニューラルネットワーク,マルチグラフニューラルネットワーク,四元系ニューラルネットワークに直接影響する。
論文 参考訳(メタデータ) (2023-10-05T20:27:22Z) - Learning Discretized Neural Networks under Ricci Flow [51.36292559262042]
低精度重みとアクティベーションからなる離散ニューラルネットワーク(DNN)について検討する。
DNNは、訓練中に微分不可能な離散関数のために無限あるいはゼロの勾配に悩まされる。
論文 参考訳(メタデータ) (2023-02-07T10:51:53Z) - Limitless stability for Graph Convolutional Networks [8.1585306387285]
この研究は、グラフ畳み込みネットワークに対する厳密で斬新で広く適用可能な安定性保証と転送可能性境界を確立する。
グラフ畳み込みネットワークは、GSOがグラフラプラシアンであり、フィルタが無限大で正則である場合、グラフ粗粒化法の下で安定であることを示す。
論文 参考訳(メタデータ) (2023-01-26T22:17:00Z) - Stability of Aggregation Graph Neural Networks [153.70485149740608]
グラフの摂動を考慮したアグリゲーショングラフニューラルネットワーク(Agg-GNN)の安定性特性について検討した。
安定性境界は各ノードに作用するCNNの第1層におけるフィルタの特性によって定義される。
また、Agg-GNNでは、写像演算子の選択性は、CNNステージの第1層においてのみフィルタの特性に結びついていると結論付けている。
論文 参考訳(メタデータ) (2022-07-08T03:54:52Z) - Stability of Neural Networks on Manifolds to Relative Perturbations [118.84154142918214]
グラフニューラルネットワーク(GNN)は多くの実践シナリオにおいて素晴らしいパフォーマンスを示している。
GNNは大規模グラフ上でうまくスケールすることができるが、これは既存の安定性がノード数とともに増加するという事実に矛盾する。
論文 参考訳(メタデータ) (2021-10-10T04:37:19Z) - Training Stable Graph Neural Networks Through Constrained Learning [116.03137405192356]
グラフニューラルネットワーク(GNN)は、ネットワークデータから機能を学ぶためにグラフ畳み込みに依存する。
GNNは、グラフフィルタから受け継いだ特性である、基礎となるグラフの様々な種類の摂動に対して安定である。
本稿では,GNNの安定条件に制約を課すことにより,新たな制約付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-07T15:54:42Z) - Stability of Graph Convolutional Neural Networks to Stochastic
Perturbations [122.12962842842349]
グラフ畳み込みニューラルネットワーク(GCNN)は、ネットワークデータから表現を学ぶ非線形処理ツールである。
現在の分析では決定論的摂動を考慮しているが、トポロジカルな変化がランダムである場合、関連する洞察を与えられない。
本稿では,リンク損失に起因する乱れグラフ摂動に対するGCNNの安定性について検討する。
論文 参考訳(メタデータ) (2021-06-19T16:25:28Z) - On the Stability of Graph Convolutional Neural Networks under Edge
Rewiring [22.58110328955473]
グラフニューラルネットワークは、機械学習コミュニティ内で人気が高まっている。
しかし、その安定性、すなわち入力中の小さな摂動に対する頑健さは、まだよく理解されていない。
我々は,グラフニューラルネットワークが高次ノード間の切り換えに安定であることを示す,解釈可能な上界モデルを開発した。
論文 参考訳(メタデータ) (2020-10-26T17:37:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。