Balancing Privacy, Robustness, and Efficiency in Machine Learning
- URL: http://arxiv.org/abs/2312.14712v3
- Date: Thu, 26 Jun 2025 13:12:25 GMT
- Title: Balancing Privacy, Robustness, and Efficiency in Machine Learning
- Authors: Youssef Allouah, Rachid Guerraoui, John Stephan,
- Abstract summary: We argue that achieving robustness, privacy, and efficiency simultaneously in machine learning systems is infeasible under prevailing threat models.<n>We advocate for a systematic research agenda aimed at formalizing the robustness-privacy-efficiency trilemma.
- Score: 7.278033100480175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This position paper argues that achieving robustness, privacy, and efficiency simultaneously in machine learning systems is infeasible under prevailing threat models. The tension between these goals arises not from algorithmic shortcomings but from structural limitations imposed by worst-case adversarial assumptions. We advocate for a systematic research agenda aimed at formalizing the robustness-privacy-efficiency trilemma, exploring how principled relaxations of threat models can unlock better trade-offs, and designing benchmarks that expose rather than obscure the compromises made. By shifting focus from aspirational universal guarantees to context-aware system design, the machine learning community can build models that are truly appropriate for real-world deployment.
Related papers
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - Foundations of Unknown-aware Machine Learning [15.159780181377679]
This thesis develops both algorithmic and theoretical foundations to address key reliability issues arising from distributional uncertainty and unknown classes.<n>A core contribution is the development of an unknown-aware learning framework that enables models to recognize and handle novel inputs without labeled OOD data.<n>The thesis also extends reliable learning to foundation models, including large language models (LLMs)<n>Overall, these contributions promote unknown-aware learning as a new paradigm, and we hope it can advance the reliability of AI systems with minimal human efforts.
arXiv Detail & Related papers (2025-05-20T21:39:08Z) - Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models [91.24296813969003]
This paper advocates integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML.
We argue that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models.
arXiv Detail & Related papers (2025-02-28T14:57:33Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.
It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models.
Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality.
In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large.
arXiv Detail & Related papers (2024-05-17T18:11:11Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Towards Independence Criterion in Machine Unlearning of Features and
Labels [9.790684060172662]
This work delves into the complexities of machine unlearning in the face of distributional shifts.
Our research introduces a novel approach that leverages influence functions and principles of distributional independence to address these challenges.
Our method not only facilitates efficient data removal but also dynamically adjusts the model to preserve its generalization capabilities.
arXiv Detail & Related papers (2024-03-12T23:21:09Z) - Data Collaboration Analysis Over Matrix Manifolds [0.0]
Privacy-Preserving Machine Learning (PPML) addresses this challenge by safeguarding sensitive information.
NRI-DC framework emerges as an innovative approach, potentially resolving the 'data island' issue among institutions.
This study establishes a rigorous theoretical foundation for these collaboration functions and introduces new formulations.
arXiv Detail & Related papers (2024-03-05T08:52:16Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
Method integrates machine learning with self-consistent field methods to achieve both low validation cost and interpret-ability.
This, in turn, enables exploration of the model's ability with active learning and instills confidence in its integration into real-world studies.
arXiv Detail & Related papers (2024-02-15T18:41:35Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
Privacy-Preserving Machine Learning (PPML) methods have been introduced to safeguard the privacy and security of Machine Learning models.
Modern cryptographic scheme, Hybrid Homomorphic Encryption (HHE) has recently emerged.
We develop and evaluate an HHE-based PPML application for classifying heart disease based on sensitive ECG data.
arXiv Detail & Related papers (2024-01-26T13:12:52Z) - Hierarchical Framework for Interpretable and Probabilistic Model-Based
Safe Reinforcement Learning [1.3678669691302048]
This paper proposes a novel approach for the use of deep reinforcement learning in safety-critical systems.
It combines the advantages of probabilistic modeling and reinforcement learning with the added benefits of interpretability.
arXiv Detail & Related papers (2023-10-28T20:30:57Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunter is an innovative model for vulnerability identification that employs the Conformer mechanism.
This mechanism fuses self-attention with convolutional networks to capture both local, position-wise features and global, content-based interactions.
arXiv Detail & Related papers (2023-09-27T00:10:29Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
In this paper, we explore a class of distributional instance segmentation models using latent codes.
For robotic picking applications, we propose a confidence mask method to achieve the high precision necessary.
We show that our method can significantly reduce critical errors in robotic systems, including our newly released dataset of ambiguous scenes.
arXiv Detail & Related papers (2023-05-03T05:57:29Z) - On the Privacy-Robustness-Utility Trilemma in Distributed Learning [7.778461949427662]
We present the first tight analysis of the error incurred by any algorithm ensuring robustness against a fraction of adversarial machines.
Our analysis exhibits a fundamental trade-off between privacy, robustness, and utility.
arXiv Detail & Related papers (2023-02-09T17:24:18Z) - Risk-Averse Model Uncertainty for Distributionally Robust Safe
Reinforcement Learning [3.9821399546174825]
We introduce a deep reinforcement learning framework for safe decision making in uncertain environments.
We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems.
In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.
arXiv Detail & Related papers (2023-01-30T00:37:06Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z) - Holistic Adversarial Robustness of Deep Learning Models [91.34155889052786]
Adversarial robustness studies the worst-case performance of a machine learning model to ensure safety and reliability.
This paper provides a comprehensive overview of research topics and foundational principles of research methods for adversarial robustness of deep learning models.
arXiv Detail & Related papers (2022-02-15T05:30:27Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Bounding Information Leakage in Machine Learning [26.64770573405079]
This paper investigates fundamental bounds on information leakage.
We identify and bound the success rate of the worst-case membership inference attack.
We derive bounds on the mutual information between the sensitive attributes and model parameters.
arXiv Detail & Related papers (2021-05-09T08:49:14Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
Adversarial robustness has attracted extensive studies recently by revealing the vulnerability and intrinsic characteristics of deep networks.
In this work we investigate the adversarial vulnerability as well as defense under long-tailed distributions.
We propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant and data re-balancing.
arXiv Detail & Related papers (2021-04-06T17:53:08Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
In this paper, we point out the side effects of current randomized smoothing.
Specifically, we articulate and prove two major points: 1) the decision boundaries of smoothed classifiers will shrink, resulting in disparity in class-wise accuracy; 2) applying noise augmentation in the training process does not necessarily resolve the shrinking issue due to the inconsistent learning objectives.
arXiv Detail & Related papers (2020-03-02T23:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.