論文の概要: On fundamental aspects of quantum extreme learning machines
- arxiv url: http://arxiv.org/abs/2312.15124v2
- Date: Fri, 27 Sep 2024 15:08:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 09:05:28.612923
- Title: On fundamental aspects of quantum extreme learning machines
- Title(参考訳): 量子極端学習マシンの基礎的側面について
- Authors: Weijie Xiong, Giorgio Facelli, Mehrad Sahebi, Owen Agnel, Thiparat Chotibut, Supanut Thanasilp, Zoë Holmes,
- Abstract要約: QELM(Quantum Extreme Learning Machines)は、量子機械学習のための有望なフレームワークとして登場した。
本稿では,QELMの予測をフーリエ級数に分解することで,QELMの表現性について検討する。
- 参考スコア(独自算出の注目度): 1.3140209441982318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Extreme Learning Machines (QELMs) have emerged as a promising framework for quantum machine learning. Their appeal lies in the rich feature map induced by the dynamics of a quantum substrate - the quantum reservoir - and the efficient post-measurement training via linear regression. Here we study the expressivity of QELMs by decomposing the prediction of QELMs into a Fourier series. We show that the achievable Fourier frequencies are determined by the data encoding scheme, while Fourier coefficients depend on both the reservoir and the measurement. Notably, the expressivity of QELMs is fundamentally limited by the number of Fourier frequencies and the number of observables, while the complexity of the prediction hinges on the reservoir. As a cautionary note on scalability, we identify four sources that can lead to the exponential concentration of the observables as the system size grows (randomness, hardware noise, entanglement, and global measurements) and show how this can turn QELMs into useless input-agnostic oracles. In particular, our result on the reservoir-induced concentration strongly indicates that quantum reservoirs drawn from a highly random ensemble make QELM models unscalable. Our analysis elucidates the potential and fundamental limitations of QELMs, and lays the groundwork for systematically exploring quantum reservoir systems for other machine learning tasks.
- Abstract(参考訳): QELM(Quantum Extreme Learning Machines)は、量子機械学習のための有望なフレームワークとして登場した。
彼らの魅力は、量子基板(量子貯水池)の力学によって引き起こされるリッチな特徴写像と、線形回帰による効率的な後測定トレーニングにある。
ここでは、QELMの予測をフーリエ級数に分解することで、QELMの表現性について検討する。
達成可能なフーリエ周波数はデータ符号化方式により決定され、フーリエ係数は貯水池と測定の両方に依存することを示す。
特に、QELMsの表現性は、フーリエ周波数の数と観測可能な観測値の数によって根本的に制限されるが、予測の複雑さは貯水池に依存する。
スケーラビリティに関する注意として、システムサイズが大きくなるにつれて観測対象の指数的な集中につながる4つの情報源(ランダム性、ハードウェアノイズ、絡み合い、グローバル測定)を特定し、QELMを無駄な入力に依存しないオラクルにする方法を示す。
特に, 高ランダムなアンサンブルから引き出された量子貯水池がQELMモデルを膨らませることができないことを強く示唆している。
我々の分析はQELMのポテンシャルと基本的限界を解明し、他の機械学習タスクのための量子貯水池システムを体系的に探索する基盤となる。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Accurate Numerical Simulations of Open Quantum Systems Using Spectral Tensor Trains [0.0]
量子ビット間のデコヒーレンス(英語版)は、量子計算における主要なボトルネックである。
数値計算法Q-ASPEN(Quantum Accelerated Propagator Evaluation)を提案する。
Q-ASPENは任意に正確であり、誤り訂正量子計算に必要なリソースを推定するために適用することができる。
論文 参考訳(メタデータ) (2024-07-16T02:33:27Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - Extracting Many-Body Quantum Resources within One-Body Reduced Density
Matrix Functional Theory [0.0]
量子フィッシャー情報(Quantum Fisher information, QFI)は、パラメータ推定の最終的な精度限界を定量化するために用いられる量子科学の中心的な概念である。
ここでは、汎関数理論と量子情報からのアイデアを組み合わせて、フェルミオン基底状態とボゾン基底状態のQFIのための新しい機能的枠組みを開発する。
この結果から, 1体還元密度行列汎関数理論と量子フィッシャー情報との初接続が得られた。
論文 参考訳(メタデータ) (2023-11-21T13:33:53Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
量子機械学習(QML)は、特に量子データに対して、データ分析を加速する可能性がある。
ここでは、QMLの現在の方法と応用について概観する。
量子ニューラルネットワークと量子ディープラーニングに焦点をあてて、量子と古典的な機械学習の違いを強調します。
論文 参考訳(メタデータ) (2023-03-16T17:10:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
臨界近傍の量子系の低エネルギー力学が有限絡みによってどのように変化するかを研究する。
その結果、時間依存的臨界現象における絡み合いによる正確な役割が確立された。
論文 参考訳(メタデータ) (2023-01-23T19:23:54Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。