論文の概要: Accurate Numerical Simulations of Open Quantum Systems Using Spectral Tensor Trains
- arxiv url: http://arxiv.org/abs/2407.11327v1
- Date: Tue, 16 Jul 2024 02:33:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:42:16.826314
- Title: Accurate Numerical Simulations of Open Quantum Systems Using Spectral Tensor Trains
- Title(参考訳): スペクトルテンソルトレインを用いたオープン量子系の高精度数値シミュレーション
- Authors: Ryan T. Grimm, Joel D. Eaves,
- Abstract要約: 量子ビット間のデコヒーレンス(英語版)は、量子計算における主要なボトルネックである。
数値計算法Q-ASPEN(Quantum Accelerated Propagator Evaluation)を提案する。
Q-ASPENは任意に正確であり、誤り訂正量子計算に必要なリソースを推定するために適用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoherence between qubits is a major bottleneck in quantum computations. Decoherence results from intrinsic quantum and thermal fluctuations as well as noise in the external fields that perform the measurement and preparation processes. With prescribed colored noise spectra for intrinsic and extrinsic noise, we present a numerical method, Quantum Accelerated Stochastic Propagator Evaluation (Q-ASPEN), to solve the time-dependent noise-averaged reduced density matrix in the presence of intrinsic and extrinsic noise. Q-ASPEN is arbitrarily accurate and can be applied to provide estimates for the resources needed to error-correct quantum computations. We employ spectral tensor trains, which combine the advantages of tensor networks and pseudospectral methods, as a variational ansatz to the quantum relaxation problem and optimize the ansatz using methods typically used to train neural networks. The spectral tensor trains in Q-ASPEN make accurate calculations with tens of quantum levels feasible. We present benchmarks for Q-ASPEN on the spin-boson model in the presence of intrinsic noise and on a quantum chain of up to 32 sites in the presence of extrinsic noise. In our benchmark, the memory cost of Q-ASPEN scales linearly with the system size once the number of states is larger than the number of basis functions.
- Abstract(参考訳): 量子ビット間のデコヒーレンス(英語版)は量子計算における主要なボトルネックである。
デコヒーレンス(decoherence)は、内在的な量子および熱ゆらぎと、測定および準備プロセスを実行する外部磁場のノイズから生じる。
固有・外部雑音に対する所定の色付き雑音スペクトルを用いて、固有・外部雑音の存在下での時間依存性雑音平均低減密度行列を解くために、量子加速度確率伝搬器評価法(Q-ASPEN)を提案する。
Q-ASPENは任意に正確であり、誤り訂正量子計算に必要なリソースを推定するために適用することができる。
我々は、テンソルネットワークと疑似スペクトル法の利点を組み合わせたスペクトルテンソルトレインを、量子緩和問題に対する変分アンザッツとして使用し、ニューラルネットワークのトレーニングに一般的に使用される手法を用いてアンザッツを最適化する。
Q-ASPENのスペクトルテンソルは、数十の量子レベルで正確に計算できる。
スピンボソンモデルにおけるQ-ASPENのベンチマークについて,内在ノイズの存在下でのQ-ASPENのベンチマーク,外在ノイズの存在下での最大32箇所の量子連鎖について述べる。
本ベンチマークでは,Q-ASPENのメモリコストが基底関数の数よりも大きい場合,システムサイズと線形にスケールする。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Optimal training of finitely-sampled quantum reservoir computers for forecasting of chaotic dynamics [3.7960472831772765]
現在のノイズ中間スケール量子(NISQ)時代には、ノイズの存在は量子コンピューティングアルゴリズムの性能を悪化させる。
本稿では,有限サンプリングノイズが量子貯留層計算(QRC)と再帰性のない量子貯留層計算(RF-QRC)のカオス的時系列予測能力に与える影響を解析する。
有限サンプリングノイズはQRCとRF-QRCの両方の予測能力を劣化させるが,ノイズの伝搬によりQRCに悪影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-09-02T17:51:48Z) - Quantum subspace expansion in the presence of hardware noise [0.0]
現在の量子処理ユニット(QPU)の基底状態エネルギーの発見は課題を呈し続けている。
ハードウェアノイズは、パラメタライズド量子回路の表現性とトレーニング性の両方に深刻な影響を及ぼす。
量子サブスペース拡張とVQEを統合する方法を示し、量子コンピューティング能力と古典コンピューティング能力とコストの最適なバランスを可能にする。
論文 参考訳(メタデータ) (2024-04-14T02:48:42Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
変分量子固有解法(VQE)は複雑な量子問題を解くための有望なアルゴリズムである。
量子デバイスにおけるノイズのユビキタスな存在は、しばしばVQE結果の正確さと信頼性を制限する。
本稿では,VQE計算におけるゼロノイズ外挿(ZNE)にニューラルネットワークを利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-10T15:35:41Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Algorithmic Shadow Spectroscopy [0.0]
ごく少数の回路繰り返し(ショット)と余剰資源(アンシラ量子ビット)を使わずにエネルギーギャップを推定するためのシミュレータ非依存の量子アルゴリズムを提案する。
我々は,本手法が実用的には直感的に使いやすく,ゲートノイズに対して頑健であり,新しいタイプのアルゴリズム的エラー軽減手法であり,時間ステップ当たり10ショットという通常の近距離量子アルゴリズムよりも桁違いに少ないショット数を用いることを実証した。
論文 参考訳(メタデータ) (2022-12-21T14:23:48Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
最大21キュービットの雑音量子フーリエ変換プロセッサをシミュレートする。
我々は、デジタルエラーモデルに頼るのではなく、微視的な散逸過程を考慮に入れている。
動作中の消散機構によっては、入力状態の選択が量子アルゴリズムの性能に強い影響を与えることが示される。
論文 参考訳(メタデータ) (2021-02-08T14:55:44Z) - Quantum reservoir computing with a single nonlinear oscillator [0.0]
単一非線形発振器における連続可変量子貯水池計算を提案する。
量子古典的な性能向上を実証し、量子測定の非線形性(英語版)を推定する。
量子貯水池の性能がヒルベルト空間次元にどのように依存するか, 入射雑音の影響について検討し, その実験的な実装について簡単に述べる。
論文 参考訳(メタデータ) (2020-04-30T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。