A Target Detection Algorithm in Traffic Scenes Based on Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2312.15606v1
- Date: Mon, 25 Dec 2023 04:23:30 GMT
- Title: A Target Detection Algorithm in Traffic Scenes Based on Deep
Reinforcement Learning
- Authors: Xinyu Ren, Ruixuan Wang
- Abstract summary: This research presents a novel active detection model utilizing deep reinforcement learning to accurately detect traffic objects in real-world scenarios.
The model employs a deep Q-network based on LSTM-CNN that identifies and aligns target zones with specific categories of traffic objects.
Tests conducted demonstrate the model's proficiency, exhibiting exceptional precision and performance in locating traffic signal lights and speed limit signs.
- Score: 2.8554857235549753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research presents a novel active detection model utilizing deep
reinforcement learning to accurately detect traffic objects in real-world
scenarios. The model employs a deep Q-network based on LSTM-CNN that identifies
and aligns target zones with specific categories of traffic objects through
implementing a top-down approach with efficient feature extraction of the
environment. The model integrates historical and current actions and
observations to make a comprehensive analysis. The design of the state space
and reward function takes into account the impact of time steps to enable the
model to complete the task in fewer steps. Tests conducted demonstrate the
model's proficiency, exhibiting exceptional precision and performance in
locating traffic signal lights and speed limit signs. The findings of this
study highlight the efficacy and potential of the deep reinforcement
learning-based active detection model in traffic-related applications,
underscoring its robust detection abilities and promising performance.
Related papers
- TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis [9.458657306918859]
Effective traffic light detection is a critical component of the perception stack in autonomous vehicles.
This work introduces a novel deep-learning detection system while addressing the challenges of previous work.
We propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation.
arXiv Detail & Related papers (2024-09-11T14:12:44Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - Efficient Parameter Mining and Freezing for Continual Object Detection [0.0]
We propose efficient ways to identify which layers are the most important for a network to maintain the performance of a detector across sequential updates.
The presented findings highlight the substantial advantages of layer-level parameter isolation in facilitating incremental learning within object detection models.
arXiv Detail & Related papers (2024-02-20T01:07:32Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Spatio-Temporal Point Process for Multiple Object Tracking [30.041104276095624]
Multiple Object Tracking (MOT) focuses on modeling the relationship of detected objects among consecutive frames and merge them into different trajectories.
We propose a novel framework that can effectively predict and mask-out noisy and confusing detection results before associating objects into trajectories.
arXiv Detail & Related papers (2023-02-05T18:14:08Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Deep Echo State Networks for Short-Term Traffic Forecasting: Performance
Comparison and Statistical Assessment [8.586891288891263]
In short-term traffic forecasting, the goal is to accurately predict future values of a traffic parameter of interest.
Deep Echo State Networks achieve more accurate traffic forecasts than the rest of considered modeling counterparts.
arXiv Detail & Related papers (2020-04-17T11:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.