論文の概要: HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses
- arxiv url: http://arxiv.org/abs/2312.15883v2
- Date: Fri, 19 Apr 2024 07:14:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 19:47:30.128099
- Title: HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses
- Title(参考訳): HyKGE: 正確な医療用LLM応答のための仮説知識グラフ強化フレームワーク
- Authors: Xinke Jiang, Ruizhe Zhang, Yongxin Xu, Rihong Qiu, Yue Fang, Zhiyuan Wang, Jinyi Tang, Hongxin Ding, Xu Chu, Junfeng Zhao, Yasha Wang,
- Abstract要約: 大規模言語モデル(LLM)の精度と信頼性を向上させるための仮説知識グラフ強化(HyKGE)フレームワークを開発する。
具体的には、HyKGEはゼロショット能力とLLMの豊富な知識を仮説出力で探索し、KGの可能な探索方向を拡張する。
2つのLLMターボを用いた2つの中国医学多重選択質問データセットと1つの中国のオープンドメイン医療Q&Aデータセットの実験は、精度と説明可能性の観点からHyKGEの優位性を実証した。
- 参考スコア(独自算出の注目度): 20.635793525894872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the retrieval-augmented generation (RAG) based on Knowledge Graphs (KGs) to improve the accuracy and reliability of Large Language Models (LLMs). Recent approaches suffer from insufficient and repetitive knowledge retrieval, tedious and time-consuming query parsing, and monotonous knowledge utilization. To this end, we develop a Hypothesis Knowledge Graph Enhanced (HyKGE) framework, which leverages LLMs' powerful reasoning capacity to compensate for the incompleteness of user queries, optimizes the interaction process with LLMs, and provides diverse retrieved knowledge. Specifically, HyKGE explores the zero-shot capability and the rich knowledge of LLMs with Hypothesis Outputs to extend feasible exploration directions in the KGs, as well as the carefully curated prompt to enhance the density and efficiency of LLMs' responses. Furthermore, we introduce the HO Fragment Granularity-aware Rerank Module to filter out noise while ensuring the balance between diversity and relevance in retrieved knowledge. Experiments on two Chinese medical multiple-choice question datasets and one Chinese open-domain medical Q&A dataset with two LLM turbos demonstrate the superiority of HyKGE in terms of accuracy and explainability.
- Abstract(参考訳): 本稿では,知識グラフ(KGs)に基づく検索強化生成(RAG)について検討し,Large Language Models(LLMs)の精度と信頼性を向上させる。
最近のアプローチでは、不十分かつ反復的な知識検索、退屈で時間を要するクエリ解析、単調な知識利用に悩まされている。
この目的のために,ユーザクエリの不完全性を補うためにLLMの強力な推論能力を活用し,LLMとのインタラクションプロセスを最適化し,多様な知識を提供する仮説知識グラフ拡張(HyKGE)フレームワークを開発した。
具体的には、HyKGEは、ゼロショット能力とLLMの豊富な知識を仮説出力で探求し、KGにおける実行可能な探索方向を延長し、LLMの応答の密度と効率を高めるために慎重に調整されたプロンプトを探索する。
さらに,HOフラグメントの粒度を意識したRerank Moduleを導入し,ノイズを除去すると同時に,検索した知識の多様性と関連性のバランスを確保する。
2つのLLMターボを用いた2つの中国医学多重選択質問データセットと1つの中国のオープンドメイン医療Q&Aデータセットの実験は、精度と説明可能性の観点からHyKGEの優位性を実証した。
関連論文リスト
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Fact Finder -- Enhancing Domain Expertise of Large Language Models by Incorporating Knowledge Graphs [2.7386111894524]
ドメイン固有知識グラフ(KG)を用いた大規模言語モデルを拡張したハイブリッドシステムを導入する。
我々は,69個のサンプルを収集し,正しいKGノードの検索精度を78%向上した。
以上の結果から,ハイブリッドシステムは単独のLCMを超える精度と完全性を示した。
論文 参考訳(メタデータ) (2024-08-06T07:45:05Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
本稿では,知識グラフ(KGQA)に関する質問応答について述べる。
グラフニューラルネットワーク(GNN)とLarge Language Modelsを相乗化してKGを推論するExplore-then-Determine(EtD)フレームワークを提案する。
EtDは最先端のパフォーマンスを達成し、忠実な推論結果を生成する。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Mitigating Hallucinations in Large Language Models via Self-Refinement-Enhanced Knowledge Retrieval [14.58181631462891]
大規模言語モデル(LLM)は、様々な領域で顕著な機能を示している。
幻覚への感受性は、医療などの重要な分野への展開に重大な課題をもたらす。
我々は,LLMの応答の事実性を高めるために,自己精製強化知識グラフ検索法(Re-KGR)を提案する。
論文 参考訳(メタデータ) (2024-05-10T15:40:50Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。