論文の概要: ChatEd: A Chatbot Leveraging ChatGPT for an Enhanced Learning Experience
in Higher Education
- arxiv url: http://arxiv.org/abs/2401.00052v1
- Date: Fri, 29 Dec 2023 19:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 19:03:11.339132
- Title: ChatEd: A Chatbot Leveraging ChatGPT for an Enhanced Learning Experience
in Higher Education
- Title(参考訳): ChatEd:ChatGPTを活用した高等教育用チャットボット
- Authors: Kevin Wang, Jason Ramos, Ramon Lawrence
- Abstract要約: この研究は、ChatGPTの強みと従来の情報検索に基づくフレームワークを組み合わせて、高等教育における学生支援を強化する革新的なアーキテクチャを導入する。
- 参考スコア(独自算出の注目度): 1.835530250800342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid evolution of Natural Language Processing (NLP), Large Language
Models (LLMs) like ChatGPT have emerged as powerful tools capable of
transforming various sectors. Their vast knowledge base and dynamic interaction
capabilities represent significant potential in improving education by
operating as a personalized assistant. However, the possibility of generating
incorrect, biased, or unhelpful answers are a key challenge to resolve when
deploying LLMs in an education context. This work introduces an innovative
architecture that combines the strengths of ChatGPT with a traditional
information retrieval based chatbot framework to offer enhanced student support
in higher education. Our empirical evaluations underscore the high promise of
this approach.
- Abstract(参考訳): 自然言語処理(NLP)の急速な進化に伴い、ChatGPTのような大規模言語モデル(LLM)は、様々な分野を変革できる強力なツールとして登場した。
その膨大な知識ベースと動的相互作用能力は、パーソナライズされたアシスタントとして運営することで教育を改善する重要な可能性を示している。
しかし,LLMを教育現場に展開する際には,誤った,偏見のある,あるいは不快な回答が生まれる可能性も大きな課題である。
この研究は、ChatGPTの強みと従来の情報検索ベースのチャットボットフレームワークを組み合わせて、高等教育における学生支援を強化する革新的なアーキテクチャを導入する。
私たちの経験的評価は、このアプローチの高い期待を裏付けています。
関連論文リスト
- LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Beyond Traditional Teaching: The Potential of Large Language Models and
Chatbots in Graduate Engineering Education [0.0]
本稿では,大規模言語モデル(LLM)とチャットボットを大学院工学教育に統合する可能性について検討する。
コース資料から質問バンクを作成し、正確で洞察に富んだ回答を提供するボットの能力を評価する。
数学的な問題解決やコード解釈のためにWolfram Alphaのような強力なプラグインが、ボットの機能を大幅に拡張できることを示す。
論文 参考訳(メタデータ) (2023-09-09T13:37:22Z) - BatGPT: A Bidirectional Autoregessive Talker from Generative Pre-trained
Transformer [77.28871523946418]
BatGPTは武漢大学と上海江東大学が共同で設計・訓練した大規模言語モデルである。
テキストプロンプト、画像、オーディオなど、さまざまなタイプの入力に応答して、非常に自然で、流動的なテキストを生成することができる。
論文 参考訳(メタデータ) (2023-07-01T15:10:01Z) - Developing Effective Educational Chatbots with ChatGPT prompts: Insights
from Preliminary Tests in a Case Study on Social Media Literacy (with
appendix) [43.55994393060723]
ChatGPTのようなゼロショット学習機能を持つ言語学習モデルの最近の進歩は、教育チャットボットを開発する新たな可能性を示している。
本稿では,混合ターンチャットボットのインタラクションを可能にするシンプルなシステムを用いたケーススタディを提案する。
本稿では,ChatGPTが複数の相互接続型学習目標を追求し,文化,年齢,教育レベルなどのユーザ特性に教育活動を適応させ,多様な教育戦略や会話スタイルを活用できる能力について検討する。
論文 参考訳(メタデータ) (2023-06-18T22:23:18Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
質問応答の指数的増加(QA)は、あらゆる自然言語処理(NLP)コースにおいて必須のトピックとなっている。
本稿では、QA教育のプラットフォームとしてUKP-SQuAREを紹介する。
学生は様々な視点から様々なQAモデルを実行、比較、分析することができる。
論文 参考訳(メタデータ) (2023-05-31T11:29:04Z) - Transformative Effects of ChatGPT on Modern Education: Emerging Era of
AI Chatbots [36.760677949631514]
ChatGPTは、大量のデータの分析に基づいて、一貫性と有用な応答を提供するためにリリースされた。
予備評価の結果,ChatGPTは財務,コーディング,数学など各分野において異なる性能を示した。
不正確なデータや偽データを生成する可能性など、その使用には明らかな欠点がある。
ChatGPTを教育のツールとして使用すれば、学術的規制と評価のプラクティスを更新する必要がある。
論文 参考訳(メタデータ) (2023-05-25T17:35:57Z) - ChatGPT: Applications, Opportunities, and Threats [0.0]
ChatGPTは、教師付き機械学習と強化学習技術を用いて微調整された人工知能技術である。
このシステムは、事前学習されたディープラーニングモデルのパワーとプログラマビリティレイヤを組み合わせることで、自然言語会話を生成する強力な基盤を提供する。
自然に聞こえる応答を生成する能力は例外的であるが、著者らはChatGPTが人間と同じレベルの理解、共感、創造性を持っていないと考えている。
論文 参考訳(メタデータ) (2023-04-14T16:25:03Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - On the Educational Impact of ChatGPT: Is Artificial Intelligence Ready
to Obtain a University Degree? [0.0]
大学教育におけるChatGPTの効果を評価する。
コンピュータサイエンスの高等教育は、ChatGPTのようなツールにどのように適応すべきかについて議論する。
論文 参考訳(メタデータ) (2023-03-20T14:27:37Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。