A Maritime Industry Experience for Vessel Operational Anomaly Detection: Utilizing Deep Learning Augmented with Lightweight Interpretable Models
- URL: http://arxiv.org/abs/2401.00112v2
- Date: Sat, 25 Jan 2025 00:34:06 GMT
- Title: A Maritime Industry Experience for Vessel Operational Anomaly Detection: Utilizing Deep Learning Augmented with Lightweight Interpretable Models
- Authors: Mahshid Helali Moghadam, Mateusz Rzymowski, Lukasz Kulas,
- Abstract summary: This study showcases a vessel operational anomaly detection approach that utilizes semi-supervised deep learning models augmented with lightweight interpretable surrogate models.
We leverage standard and Long Short-Term Memory (LSTM) autoencoders trained on normal operational data and tested with real anomaly-revealing data.
- Score: 0.19116784879310028
- License:
- Abstract: This study presents an industry experience showcasing a vessel operational anomaly detection approach that utilizes semi-supervised deep learning models augmented with lightweight interpretable surrogate models, applied to an industrial sensorized vessel, called TUCANA. We leverage standard and Long Short-Term Memory (LSTM) autoencoders trained on normal operational data and tested with real anomaly-revealing data. We then provide a projection of the inference results on a lower-dimension data map generated by t-distributed stochastic neighbor embedding (t-SNE), which serves as an unsupervised baseline and shows the distribution of the identified anomalies. We also develop lightweight surrogate models using random forest and decision tree to promote transparency and interpretability for the inference results of the deep learning models and assist the engineer with an agile assessment of the flagged anomalies. The approach is empirically evaluated using real data from TUCANA. The empirical results show higher performance of the LSTM autoencoder -- as the anomaly detection module with effective capturing of temporal dependencies in the data -- and demonstrate the practicality of the lightweight surrogate models in providing helpful interpretability, which leads to higher efficiency for the engineer's decision-making.
Related papers
- Deep evolving semi-supervised anomaly detection [14.027613461156864]
The aim of this paper is to formalise the task of continual semi-supervised anomaly detection (CSAD)
The paper introduces a baseline model of a variational autoencoder (VAE) to work with semi-supervised data along with a continual learning method of deep generative replay with outlier rejection.
arXiv Detail & Related papers (2024-12-01T15:48:37Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
arXiv Detail & Related papers (2024-07-19T13:36:35Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Quality In / Quality Out: Data quality more relevant than model choice in anomaly detection with the UGR'16 [0.29998889086656577]
We show that relatively minor modifications on a benchmark dataset cause significantly more impact on model performance than the specific ML technique considered.
We also show that the measured model performance is uncertain, as a result of labelling inaccuracies.
arXiv Detail & Related papers (2023-05-31T12:03:12Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.