論文の概要: Harmonizing SO(3)-Equivariance with Neural Expressiveness: a Hybrid Deep Learning Framework Oriented to the Prediction of Electronic Structure Hamiltonian
- arxiv url: http://arxiv.org/abs/2401.00744v9
- Date: Sun, 5 May 2024 03:51:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 00:05:27.601101
- Title: Harmonizing SO(3)-Equivariance with Neural Expressiveness: a Hybrid Deep Learning Framework Oriented to the Prediction of Electronic Structure Hamiltonian
- Title(参考訳): ニューラル表現性を考慮したSO(3)-等価化:電子構造ハミルトニアン予測を目的としたハイブリッドディープラーニングフレームワーク
- Authors: Shi Yin, Xinyang Pan, Xudong Zhu, Tianyu Gao, Haochong Zhang, Feng Wu, Lixin He,
- Abstract要約: HarmoSEは、ディープラーニングのための2段階のケースケード回帰フレームワークである。
第1段階は、豊富なSO(3)-同変の特徴を抽出したハミルトニアンを予測する。
第2段階はハミルトニアンの詳細な予測として第1段階の出力を洗練させる。
- 参考スコア(独自算出の注目度): 36.13416266854978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning for predicting the electronic structure Hamiltonian of quantum systems necessitates satisfying the covariance laws, among which achieving SO(3)-equivariance without sacrificing the non-linear expressive capability of networks remains unsolved. To navigate the harmonization between equivariance and expressiveness, we propose a deep learning method, namely HarmoSE, synergizing two distinct categories of neural mechanisms as a two-stage cascaded regression framework. The first stage corresponds to group theory-based neural mechanisms with inherent SO(3)-equivariant properties prior to the parameter learning process, while the second stage is characterized by a non-linear 3D graph Transformer network we propose featuring high capability on non-linear expressiveness. The novel combination lies in the point that, the first stage predicts baseline Hamiltonians with abundant SO(3)-equivariant features extracted, assisting the second stage in empirical learning of equivariance; and in turn, the second stage refines the first stage's output as a fine-grained prediction of Hamiltonians using powerful non-linear neural mappings, compensating for the intrinsic weakness on non-linear expressiveness capability of mechanisms in the first stage. Our method enables precise, generalizable predictions while maintaining robust SO(3)-equivariance under rotational transformations, and achieves state-of-the-art performance in Hamiltonian prediction on six benchmark databases.
- Abstract(参考訳): 量子系の電子構造を予測するための深層学習 量子系のハミルトニアンは共分散法則を満たす必要があるが、ネットワークの非線形表現能力を犠牲にすることなくSO(3)-等分散を達成することは未解決のままである。
等価性と表現性の間の調和をナビゲートするために,2段階の回帰フレームワークとして,ニューラルメカニズムの2つの異なるカテゴリを相乗化する深層学習手法,すなわちHarmoSEを提案する。
第1段階は、パラメータ学習プロセスに先立って固有のSO(3)-同変特性を持つ群理論に基づく神経機構に対応し、第2段階は非線形3Dグラフ変換器ネットワークにより特徴付けられる。
新たな組み合わせは、第1段階がSO(3)-等変量の豊富なベースラインハミルトニアンを予測し、第2段階が等価性の経験的学習において補助し、第2段階が第2段階の出力を強力な非線形神経マッピングを用いてハミルトンの微細な予測として洗練し、第1段階のメカニズムの非線形表現能力に固有の弱点を補う点にある。
本手法は, 回転変換下でのSO(3)-等分散性を維持しつつ, 高精度で一般化可能な予測が可能であり, 6つのベンチマークデータベース上でのハミルトン予測における最先端性能を実現する。
関連論文リスト
- A Framework of SO(3)-equivariant Non-linear Representation Learning and its Application to Electronic-Structure Hamiltonian Prediction [29.49980632339327]
本稿では,物理システムにディープラーニングを適用する上で重要な課題に対処する理論的および方法論的枠組みを提案する。
物理学における共変理論に着想を得て、SO(3)-不変量とSO(3)-同変量とそれらの表現の間の数学的関係を探求する。
我々は、最先端の予測精度に劇的なブレークスルーを示し、ハミルトン人の予測は最大40%、下流の物理量の予測は最大76%改善した。
論文 参考訳(メタデータ) (2024-05-09T12:34:45Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - An interpretable neural network-based non-proportional odds model for
ordinal regression [3.0277213703725767]
本研究では,直交回帰のための解釈可能なニューラルネットワークに基づく非局所奇数モデル(N$3$POM)を提案する。
N$3$POMは、正規回帰に対する従来のアプローチとはいくつかの点で異なる。
論文 参考訳(メタデータ) (2023-03-31T06:40:27Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - Nonseparable Symplectic Neural Networks [23.77058934710737]
我々は、新しいニューラルネットワークアーキテクチャ、非分離型シンプレクティックニューラルネットワーク(NSSNN)を提案する。
NSSNNは、限られた観測データから非分離ハミルトン系のシンプレクティック構造を発見し、埋め込む。
大規模ハミルトニアン系に対する長期的、正確で、堅牢な予測を得るためのアプローチの独特な計算上の利点を示す。
論文 参考訳(メタデータ) (2020-10-23T19:50:13Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Adding machine learning within Hamiltonians: Renormalization group
transformations, symmetry breaking and restoration [0.0]
我々は、位相分類のために設計されたニューラルネットワークの予測関数を、系のハミルトニアン内の外部磁場に結合した共役変数として含む。
結果は, 対称性を破り, 復元することで, 秩序相転移を誘導できることを示す。
機械学習と物理をブリッジする上で,この手法がいかに重要なステップを提供するかを論じる。
論文 参考訳(メタデータ) (2020-09-30T18:44:18Z) - Phase diagram for two-layer ReLU neural networks at infinite-width limit [6.380166265263755]
我々は、2層ReLUニューラルネットワークの位相図を無限幅極限で描画する。
位相図の3つのレギュレーション、すなわち線形レギュレーション、臨界レギュレーション、凝縮レギュレーションを同定する。
線形状態においては、NNトレーニングダイナミクスは指数的損失減衰を持つランダム特徴モデルとほぼ同様の線形である。
凝縮状態において、能動ニューロンがいくつかの異なる向きで凝縮されていることを示す実験を通して、我々は実験を行う。
論文 参考訳(メタデータ) (2020-07-15T06:04:35Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。