論文の概要: Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity
- arxiv url: http://arxiv.org/abs/2502.01171v1
- Date: Mon, 03 Feb 2025 09:04:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:53:31.580387
- Title: Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity
- Title(参考訳): 適応空間によるハミルトン予測の効率的かつスケーラブルな密度汎関数理論
- Authors: Erpai Luo, Xinran Wei, Lin Huang, Yunyang Li, Han Yang, Zun Wang, Chang Liu, Zaishuo Xia, Jia Zhang, Bin Shao,
- Abstract要約: ハミルトン予測に適応空間を組み込んだ,効率的でスケーラブルな同変ネットワークを提案する。
本研究では, 安定収束を確保し, 最大70%のスパシティレートで高い性能を実現する3相スパシティスケジューリング器を開発した。
ハミルトン予想以外にも、提案されたスペーシフィケーション手法は、他のSE(3)同変ネットワークの効率性とスケーラビリティを向上させる重要な可能性を秘めている。
- 参考スコア(独自算出の注目度): 11.415146682472127
- License:
- Abstract: Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost-driven by high-order tensor product (TP) operations-restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network that incorporates adaptive sparsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70 percent. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact.
- Abstract(参考訳): ハミルトン行列予測は計算化学において重要なものであり、幅広い分子特性を決定する基盤となっている。
SE(3)等変グラフニューラルネットワークはこの領域で顕著な成功を収めているが、その計算コストは高次テンソル積(TP)演算によって大きく制限される。
この課題に対処するために、ハミルトン予測に適応空間を組み込んだ、効率的でスケーラブルな同変ネットワークであるSPHNetを導入する。
SPHNetは、2つの革新的なスパースゲートを用いて、非臨界相互作用の組み合わせを選択的に制限し、精度を維持しながらテンソル積の計算を著しく削減する。
スパース表現を最適化するため, 安定収束を保証し, 最大70%のスパースレートで高い性能を実現する三相スパシティスケジューリング器を開発した。
QH9とPubchemQHデータセットの大規模な評価は、SPHNetが最先端の精度を実現し、既存のモデルよりも最大7倍のスピードアップを実現していることを示している。
ハミルトニアンの予測以外にも、提案されたスペーシフィケーション手法は、他のSE(3)同変ネットワークの効率とスケーラビリティを向上させる大きな可能性を秘めており、適用性と影響をさらに広げている。
関連論文リスト
- Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)に適した動的,エラーバウンドな階層行列 (H-matrix) 圧縮手法を提案する。
提案手法は,ニューラル・タンジェント・カーネル(NTK)の本質的性質を保ちながら,大規模物理モデルにおける計算複雑性とメモリ要求を低減させる。
実験により, この手法は, 高精度を維持し, 一般化能力を向上させることにより, Singular Value Decomposition (SVD) やプルーニング, 量子化などの従来の圧縮手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-09-11T05:55:51Z) - Hybrid Deep Convolutional Neural Networks Combined with Autoencoders And Augmented Data To Predict The Look-Up Table 2006 [2.082445711353476]
本研究では、自己エンコーダとデータ拡張技術により強化されたハイブリッドディープ畳み込みニューラルネットワーク(DCNN)モデルの開発について検討する。
オリジナルの入力機能を3つの異なるオートエンコーダ構成で拡張することにより、モデルの予測能力は大幅に改善された。
論文 参考訳(メタデータ) (2024-08-26T20:45:07Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Fine-Tuning Surrogate Gradient Learning for Optimal Hardware Performance
in Spiking Neural Networks [1.52292571922932]
スパイキングニューラルネットワーク(SNN)は、ハードウェアで慎重に活用することで、膨大なエネルギー効率の恩恵をもたらすことができる。
この研究は、トレーニングがハードウェアのパフォーマンスに与える影響に関する新たな洞察を明らかにします。
論文 参考訳(メタデータ) (2024-02-09T06:38:12Z) - Harmonizing SO(3)-Equivariance with Neural Expressiveness: a Hybrid Deep Learning Framework Oriented to the Prediction of Electronic Structure Hamiltonian [36.13416266854978]
HarmoSEは、ディープラーニングのための2段階のケースケード回帰フレームワークである。
第1段階は、豊富なSO(3)-同変の特徴を抽出したハミルトニアンを予測する。
第2段階はハミルトニアンの詳細な予測として第1段階の出力を洗練させる。
論文 参考訳(メタデータ) (2024-01-01T12:57:15Z) - SySMOL: Co-designing Algorithms and Hardware for Neural Networks with Heterogeneous Precisions [20.241671088121144]
最近の量子化技術は、非常に微細な粒度で不均一な精度を実現している。
これらのネットワークは、個々の変数の精度設定をデコードし、変数を調整し、きめ細かい混合精度計算機能を提供するために、追加のハードウェアを必要とする。
ネットワークを細粒度の不均一な精度で効率的に実行するためのエンド・ツー・エンド協調設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T17:20:09Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine(fm)は、機能間の高次インタラクションを自動的に学習し、手動の機能エンジニアリングを必要とせずに予測を行うことができる。
本研究では,スパース予測解析のためのQFM(Quaternion factorization Machine)とQNFM(Quaternion neural factorization Machine)を提案する。
論文 参考訳(メタデータ) (2021-04-05T00:02:36Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。