論文の概要: Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity
- arxiv url: http://arxiv.org/abs/2502.01171v1
- Date: Mon, 03 Feb 2025 09:04:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:21:54.459535
- Title: Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity
- Title(参考訳): 適応空間によるハミルトン予測の効率的かつスケーラブルな密度汎関数理論
- Authors: Erpai Luo, Xinran Wei, Lin Huang, Yunyang Li, Han Yang, Zun Wang, Chang Liu, Zaishuo Xia, Jia Zhang, Bin Shao,
- Abstract要約: ハミルトン予測に適応空間を組み込んだ,効率的でスケーラブルな同変ネットワークを提案する。
本研究では, 安定収束を確保し, 最大70%のスパシティレートで高い性能を実現する3相スパシティスケジューリング器を開発した。
ハミルトン予想以外にも、提案されたスペーシフィケーション手法は、他のSE(3)同変ネットワークの効率性とスケーラビリティを向上させる重要な可能性を秘めている。
- 参考スコア(独自算出の注目度): 11.415146682472127
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost-driven by high-order tensor product (TP) operations-restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network that incorporates adaptive sparsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70 percent. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact.
- Abstract(参考訳): ハミルトン行列予測は計算化学において重要なものであり、幅広い分子特性を決定する基盤となっている。
SE(3)等変グラフニューラルネットワークはこの領域で顕著な成功を収めているが、その計算コストは高次テンソル積(TP)演算によって大きく制限される。
この課題に対処するために、ハミルトン予測に適応空間を組み込んだ、効率的でスケーラブルな同変ネットワークであるSPHNetを導入する。
SPHNetは、2つの革新的なスパースゲートを用いて、非臨界相互作用の組み合わせを選択的に制限し、精度を維持しながらテンソル積の計算を著しく削減する。
スパース表現を最適化するため, 安定収束を保証し, 最大70%のスパースレートで高い性能を実現する三相スパシティスケジューリング器を開発した。
QH9とPubchemQHデータセットの大規模な評価は、SPHNetが最先端の精度を実現し、既存のモデルよりも最大7倍のスピードアップを実現していることを示している。
ハミルトニアンの予測以外にも、提案されたスペーシフィケーション手法は、他のSE(3)同変ネットワークの効率とスケーラビリティを向上させる大きな可能性を秘めており、適用性と影響をさらに広げている。
関連論文リスト
- Efficient Prediction of SO(3)-Equivariant Hamiltonian Matrices via SO(2) Local Frames [59.87385171177885]
我々は、電子構造計算を高速化するためにハミルトン行列を予測することを考える。
ハミルトン行列の対角線外ブロックとSO(2)局所フレームの関係から、QHNetV2を提案する。
論文 参考訳(メタデータ) (2025-06-11T05:04:29Z) - Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming [0.0]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンとビッグデータ分析において重要であるが、大規模なデータセットでトレーニングされた場合には、かなりの計算リソースを必要とする。
CNNトレーニングを高速化するために,Unconstrained Binary Quadratic Programming (UBQP) と Gradient Descent (SGD) を組み合わせたハイブリッド最適化手法を提案する。
提案手法は, BP-CNNベースラインの10-15%の精度向上を実現し, 同様の実行時間を維持する。
論文 参考訳(メタデータ) (2025-05-30T21:25:31Z) - Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)に適した動的,エラーバウンドな階層行列 (H-matrix) 圧縮手法を提案する。
提案手法は,ニューラル・タンジェント・カーネル(NTK)の本質的性質を保ちながら,大規模物理モデルにおける計算複雑性とメモリ要求を低減させる。
実験により, この手法は, 高精度を維持し, 一般化能力を向上させることにより, Singular Value Decomposition (SVD) やプルーニング, 量子化などの従来の圧縮手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-09-11T05:55:51Z) - Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems [1.6494451064539348]
ニューラル量子状態(NQS)のハイブリッド最適化手法を提案する。
計算ベースからの射影測定と他の測定設定からの期待値の両方を用いることで、事前学習により状態の符号構造へのアクセスが可能になる。
我々の研究は、ニューラル量子状態の信頼性と効率的な最適化の道を開いた。
論文 参考訳(メタデータ) (2024-05-31T17:55:27Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - TraceGrad: a Framework Learning Expressive SO(3)-equivariant Non-linear Representations for Electronic-Structure Hamiltonian Prediction [1.8982950873008362]
電子構造ハミルトニアンの予測において、強非線形表現性と厳密なSO(3)-同変を結合する枠組みを提案する。
本手法は,ハミルトン予測に基づく8つの挑戦的ベンチマークデータベースにおいて,予測精度の最先端性を実現する。
論文 参考訳(メタデータ) (2024-05-09T12:34:45Z) - Fine-Tuning Surrogate Gradient Learning for Optimal Hardware Performance
in Spiking Neural Networks [1.52292571922932]
スパイキングニューラルネットワーク(SNN)は、ハードウェアで慎重に活用することで、膨大なエネルギー効率の恩恵をもたらすことができる。
この研究は、トレーニングがハードウェアのパフォーマンスに与える影響に関する新たな洞察を明らかにします。
論文 参考訳(メタデータ) (2024-02-09T06:38:12Z) - Harmonizing SO(3)-Equivariance with Neural Expressiveness: a Hybrid Deep Learning Framework Oriented to the Prediction of Electronic Structure Hamiltonian [36.13416266854978]
HarmoSEは、ディープラーニングのための2段階のケースケード回帰フレームワークである。
第1段階は、豊富なSO(3)-同変の特徴を抽出したハミルトニアンを予測する。
第2段階はハミルトニアンの詳細な予測として第1段階の出力を洗練させる。
論文 参考訳(メタデータ) (2024-01-01T12:57:15Z) - SySMOL: Co-designing Algorithms and Hardware for Neural Networks with Heterogeneous Precisions [20.241671088121144]
最近の量子化技術は、非常に微細な粒度で不均一な精度を実現している。
これらのネットワークは、個々の変数の精度設定をデコードし、変数を調整し、きめ細かい混合精度計算機能を提供するために、追加のハードウェアを必要とする。
ネットワークを細粒度の不均一な精度で効率的に実行するためのエンド・ツー・エンド協調設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T17:20:09Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Efficient and Equivariant Graph Networks for Predicting Quantum
Hamiltonian [72.57870177599492]
本稿では,効率と等価性を実現するSE(3)-equivariant Network,QHNetを提案する。
我々の重要な進歩はQHNetアーキテクチャの革新的な設計であり、基礎となる対称性に従うだけでなく、テンソル製品の数を92%削減できる。
実験結果から,我々のQHNetは最先端の手法に匹敵する性能を極めて高速に達成できることが示された。
論文 参考訳(メタデータ) (2023-06-08T03:47:33Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
本稿では,Gibs-Duhem-informed Neural Network を用いて,様々な組成における二成分活性係数の予測を行う。
ニューラルネットワークの学習における損失関数にギブス・デュヘム方程式を明示的に含んでいる。
論文 参考訳(メタデータ) (2023-05-31T07:36:45Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
本論文は,3次元学習アーキテクチャを構築するための一般的なフレームワークを設計することによる課題に対処する。
提案手法はPointNetやDGCNNといった一般的なバックボーンに適用できる。
ModelNet40、ShapeNet、および実世界のデータセットであるScanObjectNNの実験では、この手法が効率、回転、精度の間の大きなトレードオフを達成することを示した。
論文 参考訳(メタデータ) (2022-09-13T12:12:19Z) - Benchmarking Test-Time Unsupervised Deep Neural Network Adaptation on
Edge Devices [19.335535517714703]
エッジへの展開後のディープニューラルネットワーク(DNN)の予測精度は、新しいデータの分布の変化によって、時間とともに低下する可能性がある。
バッチ正規化パラメータを再調整することにより、ノイズデータに対するモデルの予測精度を向上させるため、近年の予測時間非教師なしDNN適応技術が導入されている。
本論文は, 各種エッジデバイスの性能とエネルギーを定量化するために, この種の技術に関する総合的な研究を初めて行ったものである。
論文 参考訳(メタデータ) (2022-03-21T19:10:40Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine(fm)は、機能間の高次インタラクションを自動的に学習し、手動の機能エンジニアリングを必要とせずに予測を行うことができる。
本研究では,スパース予測解析のためのQFM(Quaternion factorization Machine)とQNFM(Quaternion neural factorization Machine)を提案する。
論文 参考訳(メタデータ) (2021-04-05T00:02:36Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
サンプル選択とランキングの両方を導くことで、アーキテクチャとトレーニングのレシピを共同でスコアする精度予測器を提案する。
高速な進化的検索をCPU分で実行し、さまざまなリソース制約に対するアーキテクチャと準備のペアを生成します。
FBNetV3は最先端のコンパクトニューラルネットワークのファミリーを構成しており、自動と手動で設計された競合より優れている。
論文 参考訳(メタデータ) (2020-06-03T05:20:21Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。