QNN-VRCS: A Quantum Neural Network for Vehicle Road Cooperation Systems
- URL: http://arxiv.org/abs/2412.12705v2
- Date: Thu, 23 Jan 2025 08:17:29 GMT
- Title: QNN-VRCS: A Quantum Neural Network for Vehicle Road Cooperation Systems
- Authors: Nouhaila Innan, Bikash K. Behera, Saif Al-Kuwari, Ahmed Farouk,
- Abstract summary: This research integrates quantum computing techniques to enhance Vehicle Road Cooperation Systems (VRCS)
We propose an optimized Quantum Neural Network (QNN) to better handle the complexities of traffic data processing.
Empirical evaluations on two traffic datasets show that our model achieves superior classification accuracies of 97.42% and 84.08%.
- Score: 2.7985570786346745
- License:
- Abstract: The escalating complexity of urban transportation systems, exacerbated by factors such as traffic congestion, diverse transportation modalities, and shifting commuter preferences, necessitates the development of more sophisticated analytical frameworks. Traditional computational approaches often struggle with the voluminous datasets generated by real-time sensor networks, and they generally lack the precision needed for accurate traffic prediction and efficient system optimization. This research integrates quantum computing techniques to enhance Vehicle Road Cooperation Systems (VRCS). By leveraging quantum algorithms, specifically $UU^{\dagger}$ and variational $UU^{\dagger}$, in conjunction with quantum image encoding methods such as Flexible Representation of Quantum Images (FRQI) and Novel Enhanced Quantum Representation (NEQR), we propose an optimized Quantum Neural Network (QNN). This QNN features adjustments in its entangled layer structure and training duration to better handle the complexities of traffic data processing. Empirical evaluations on two traffic datasets show that our model achieves superior classification accuracies of 97.42% and 84.08% and demonstrates remarkable robustness in various noise conditions. This study underscores the potential of quantum-enhanced 6G solutions in streamlining complex transportation systems, highlighting the pivotal role of quantum technologies in advancing intelligent transportation solutions.
Related papers
- Data re-uploading in Quantum Machine Learning for time series: application to traffic forecasting [1.2885961238169932]
We present the first application of quantum data re-uploading in the context of transport forecasting.
This technique allows quantum models to better capture complex patterns, such as traffic dynamics, by repeatedly encoding classical data into a quantum state.
Our results show that hybrid models achieve competitive accuracy with state-of-the-art classical methods, especially when the number of qubits and re-uploading blocks is increased.
arXiv Detail & Related papers (2025-01-22T10:21:00Z) - Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement [0.0]
We propose a novel architecture, which incorporates pointwise convolution within a quantum neural network framework.
By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships.
In experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2024-12-02T08:03:59Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Training-efficient density quantum machine learning [2.918930150557355]
Quantum machine learning requires powerful, flexible and efficiently trainable models.
We present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries.
arXiv Detail & Related papers (2024-05-30T16:40:28Z) - Fast Quantum Convolutional Neural Networks for Low-Complexity Object
Detection in Autonomous Driving Applications [18.34157974553066]
A quantum convolution-based object detection (QCOD) is proposed to perform object detection at high speed.
The QCOD utilizes our proposed fast quantum convolution that uploads input channel information and re-constructs output channels.
Our experiments with KITTI autonomous driving object detection dataset verify that the proposed fast quantum convolution and QCOD are successfully operated in real object detection applications.
arXiv Detail & Related papers (2023-12-28T00:38:10Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.