論文の概要: Autoregressive fragment-based diffusion for pocket-aware ligand design
- arxiv url: http://arxiv.org/abs/2401.05370v1
- Date: Fri, 15 Dec 2023 04:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 08:58:21.577764
- Title: Autoregressive fragment-based diffusion for pocket-aware ligand design
- Title(参考訳): 自己回帰的フラグメントに基づくポケットアウェアリガンド設計のための拡散
- Authors: Mahdi Ghorbani, Leo Gendelev, Paul Beroza, Michael J. Keiser
- Abstract要約: AutoFragDiffはフラグメントベースの自己回帰拡散モデルであり、ターゲットタンパク質構造に条件付けられた3D構造を生成する。
我々は、分子足場とタンパク質ポケットに固定された新しい分子断片の原子タイプと空間座標を予測するために幾何学的ベクトルパーセプトロンを用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce AutoFragDiff, a fragment-based autoregressive
diffusion model for generating 3D molecular structures conditioned on target
protein structures. We employ geometric vector perceptrons to predict atom
types and spatial coordinates of new molecular fragments conditioned on
molecular scaffolds and protein pockets. Our approach improves the local
geometry of the resulting 3D molecules while maintaining high predicted binding
affinity to protein targets. The model can also perform scaffold extension from
user-provided starting molecular scaffold.
- Abstract(参考訳): 本稿では, ターゲットタンパク質構造に条件付き3次元分子構造を生成するためのフラグメントベースの自己回帰拡散モデルであるAutoFragDiffを紹介する。
分子足場とタンパク質ポケットに固定された新しい分子断片の原子タイプと空間座標を予測するために幾何学的ベクトルパーセプトロンを用いる。
本手法は, タンパク質標的に対する高い結合親和性を維持しつつ, 得られた3d分子の局所構造を改善する。
モデルはまた、ユーザが提供する開始分子足場から足場拡張を行うこともできる。
関連論文リスト
- UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
分子リンカ設計のためのE(3)等価な3次元拡散モデルDiffLinkerを提案する。
我々のモデルは、欠落した原子を中間に配置し、初期フラグメントを全て組み込んだ分子を設計する。
DiffLinkerは、より多種多様な合成可能な分子を生成する標準データセット上で、他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T09:13:37Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - Structure-aware generation of drug-like molecules [2.449909275410288]
深部生成法は、新しい分子をスクラッチから提案する(デノボ設計)。
本稿では, 分子間空間における3次元ポーズと協調して分子グラフを生成する新しい教師付きモデルを提案する。
ドッキングベンチマークを用いて,ドッキングモデルの評価を行い,ドッキング生成によって予測される結合親和性が8%向上し,薬物類似度が10%向上することが確認された。
論文 参考訳(メタデータ) (2021-11-07T15:19:54Z) - Generating 3D Molecules Conditional on Receptor Binding Sites with Deep
Generative Models [0.0]
本稿では,受容体結合部位に条件付き3次元分子構造を生成する深層学習システムについて述べる。
生成原子密度から有効な分子配座を構築するために原子フィッティング法と結合推論法を適用した。
この研究は、ディープラーニングによるタンパク質構造からの安定な生物活性分子のエンドツーエンド予測の扉を開く。
論文 参考訳(メタデータ) (2021-10-28T15:17:24Z) - Generating 3D Molecular Structures Conditional on a Receptor Binding
Site with Deep Generative Models [0.0]
本稿では,3次元分子結合ポケット上に条件付き3次元構造を生成可能な深部生成モデルについて初めて述べる。
基準種子の構造によって定義される変分潜在空間から、有効かつ特異な分子を容易にサンプリングできることが示される。
論文 参考訳(メタデータ) (2020-10-16T16:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。