論文の概要: Open the Pandora's Box of LLMs: Jailbreaking LLMs through Representation
Engineering
- arxiv url: http://arxiv.org/abs/2401.06824v1
- Date: Fri, 12 Jan 2024 00:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 21:20:18.777998
- Title: Open the Pandora's Box of LLMs: Jailbreaking LLMs through Representation
Engineering
- Title(参考訳): Pandora's Box of LLM: Representation Engineering による LLM のジェイルブレイク
- Authors: Tianlong Li, Xiaoqing Zheng, Xuanjing Huang
- Abstract要約: 本稿では, 精巧な施工手順を必要とせず, モデル微調整の影響を受けず, 任意のオープンソースLCMに対して, プラグ可能な方法で広く適用可能なジェイルブレイク手法を提案する。
いくつかの興味深いジェイルブレイク事件に驚いた後、我々はこの手法の技法を深く研究した。
- 参考スコア(独自算出の注目度): 36.61892856628794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Getting large language models (LLMs) to refuse to answer hostile toxicity
questions is a core issue under the theme of LLMs security. Previous approaches
have used prompts engineering to jailbreak LLMs and answer some toxicity
questions. These approaches can easily fail after the model manufacturer makes
additional fine-tuning to the model. To promote the further understanding of
model jailbreaking by researchers, we are inspired by Representation
Engineering to propose a jailbreaking method that does not require elaborate
construction prompts, is not affected by model fine-tuning, and can be widely
applied to any open-source LLMs in a pluggable manner. We have evaluated this
method on multiple mainstream LLMs on carefully supplemented toxicity datasets,
and the experimental results demonstrate the significant effectiveness of our
approach. After being surprised by some interesting jailbreaking cases, we did
extensive in-depth research to explore the techniques behind this method.
- Abstract(参考訳): 大きな言語モデル(LLM)を敵対的な毒性問題に答えることを拒否したことは、LLMのセキュリティというテーマの中核的な問題である。
これまでのアプローチでは、lLMをジェイルブレイクし、いくつかの毒性問題に答えるために、プロンプトエンジニアリングを使用してきた。
これらのアプローチは、モデルメーカがモデルに微調整を加えると容易に失敗する可能性がある。
研究者らによるモデルジェイルブレイクのさらなる理解を促進するため,我々はRepresentation Engineering にインスパイアされ,精巧な構築手順を必要とせず,モデル微調整の影響を受けず,プラグイン可能なオープンソース LLM にも広く適用可能なジェイルブレイク手法を提案する。
本研究では, 本手法の有効性を実験的に検証し, 本手法の有効性を実証した。
いくつかの興味深いジェイルブレイク事件に驚いた後、我々はこの手法の背景にある技法を深く研究した。
関連論文リスト
- Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
大規模言語モデル(LLM)は、出現するジェイルブレイク攻撃に対してますます脆弱である。
この脆弱性は現実世界のアプリケーションに重大なリスクをもたらす。
本稿では,ガイドラインLLMという新しい防御パラダイムを提案する。
論文 参考訳(メタデータ) (2024-12-10T12:42:33Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
本稿では,視覚大言語モデル (VLLM) がジェイルブレイク攻撃のリスクが高い理由を考察する。
既存の防御機構は、テキストバウンド・プルーデンスの問題に悩まされる。
ジェイルブレイクの2つの代表的な評価手法は、しばしばチャンス合意を示す。
論文 参考訳(メタデータ) (2024-11-13T07:57:19Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
LLM(Large Language Models)の出現は、自然言語処理(NLP)内の様々な領域で大きな人気を集め、膨大なパワーを誇っている。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減できます。
論文 参考訳(メタデータ) (2024-07-30T04:08:00Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
本稿では,ObscurePrompt for jailbreaking LLMを紹介し,OOD(Out-of-Distribution)データにおける脆弱なアライメントに着想を得た。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - Subtoxic Questions: Dive Into Attitude Change of LLM's Response in Jailbreak Attempts [13.176057229119408]
Prompt Jailbreakingの言語モデル(LLM)がますます注目を集めています。
本稿では,ジェイルブレイクのプロンプトに対して本質的により敏感な,対象とする一連の質問に焦点をあてて,新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-12T08:08:44Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
大規模言語モデル(LLM)に対する敵対的攻撃は、有害なステートメントを作るためにモデルを「ジェイルブレイク」することができることが示されている。
LLMに対する敵対的攻撃のスペクトルは単なるジェイルブレイクよりもはるかに大きいと我々は主張する。
論文 参考訳(メタデータ) (2024-02-21T18:59:13Z) - Jailbreak and Guard Aligned Language Models with Only Few In-Context Demonstrations [38.437893814759086]
大きな言語モデル(LLM)は様々なタスクで顕著に成功しているが、その安全性と有害なコンテンツを生成するリスクは依然として懸念されている。
本研究では, LLM を倒すために有害な実証を行う In-Context Attack (ICA) と, 有害な応答の再現を拒否する事例を通じてモデルレジリエンスを高める In-Context Defense (ICD) を提案する。
論文 参考訳(メタデータ) (2023-10-10T07:50:29Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
視覚入力の連続的かつ高次元的な性質は、敵対的攻撃に対する弱いリンクであることを示す。
我々は、視力統合されたLLMの安全ガードレールを回避するために、視覚的敵の例を利用する。
本研究は,マルチモダリティの追求に伴う敵のエスカレーションリスクを浮き彫りにする。
論文 参考訳(メタデータ) (2023-06-22T22:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。