論文の概要: Multifidelity domain decomposition-based physics-informed neural
networks for time-dependent problems
- arxiv url: http://arxiv.org/abs/2401.07888v1
- Date: Mon, 15 Jan 2024 18:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 16:12:06.503914
- Title: Multifidelity domain decomposition-based physics-informed neural
networks for time-dependent problems
- Title(参考訳): 時間依存問題に対するマルチフィデリティ領域分解に基づく物理インフォームドニューラルネットワーク
- Authors: Alexander Heinlein, Amanda A. Howard, Damien Beecroft, Panos Stinis
- Abstract要約: 本稿では,時間依存問題に対する多要素重ね合わせPINNと領域分解に基づく有限基底PINNの組み合わせを提案する。
ドメイン分解アプローチは、PINNと重ね合わせのPINNアプローチを明らかに改善する。
- 参考スコア(独自算出の注目度): 42.87502453001109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiscale problems are challenging for neural network-based discretizations
of differential equations, such as physics-informed neural networks (PINNs).
This can be (partly) attributed to the so-called spectral bias of neural
networks. To improve the performance of PINNs for time-dependent problems, a
combination of multifidelity stacking PINNs and domain decomposition-based
finite basis PINNs are employed. In particular, to learn the high-fidelity part
of the multifidelity model, a domain decomposition in time is employed. The
performance is investigated for a pendulum and a two-frequency problem as well
as the Allen-Cahn equation. It can be observed that the domain decomposition
approach clearly improves the PINN and stacking PINN approaches.
- Abstract(参考訳): 物理学情報ニューラルネットワーク(PINN)のような微分方程式のニューラルネットワークに基づく離散化では、マルチスケールの問題は難しい。
これは(部分的に)ニューラルネットワークのスペクトルバイアスに起因する可能性がある。
時間依存問題に対するPINNの性能向上のために,多要素積み重ねPINNとドメイン分解に基づく有限基底PINNを組み合わせた。
特に、多元性モデルの高忠実性部分を学ぶには、時間内の領域分解を用いる。
性能は, 振り子と2周波問題, アレン・カーン方程式について検討した。
ドメイン分解アプローチは、pinnとstacking pinnアプローチを明確に改善することが観察できる。
関連論文リスト
- Spectral Informed Neural Network: An Efficient and Low-Memory PINN [3.8534287291074354]
本稿では、微分演算子を乗法で置き換えるスペクトルベースニューラルネットワークを提案する。
PINNと比較して、我々のアプローチはメモリの削減とトレーニング時間の短縮を必要とする。
我々は、スペクトル情報を用いてネットワークを訓練する2つの戦略を提供する。
論文 参考訳(メタデータ) (2024-08-29T10:21:00Z) - Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss [2.07180164747172]
より深いニューラルネットワーク(DeNN)と、柔軟な数のレイヤと、限られた隠れたレイヤを持つより広いニューラルネットワーク(WeNN)を比較します。
より多くのパラメータがWeNNを好む傾向にあるのに対し、サンプルポイントの増加と損失関数の規則性の向上は、DeNNの採用に傾いている。
論文 参考訳(メタデータ) (2024-01-31T20:10:10Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
我々はFBPINN(Finite Basis PINNs)と呼ばれる微分方程式に関連する大きな問題を解くための新しいスケーラブルなアプローチを提案する。
FBPINNは古典的有限要素法に着想を得ており、微分方程式の解はコンパクトな支持を持つ基底関数の有限集合の和として表される。
FBPINNでは、ニューラルネットワークを使ってこれらの基底関数を学習する。
論文 参考訳(メタデータ) (2021-07-16T13:03:47Z) - On the eigenvector bias of Fourier feature networks: From regression to
solving multi-scale PDEs with physics-informed neural networks [0.0]
ニューラルネットワーク(PINN)は、目標関数を近似する場合には、高周波またはマルチスケールの特徴を示す。
マルチスケールなランダムな観測機能を備えた新しいアーキテクチャを構築し、そのような座標埋め込み層が堅牢で正確なPINNモデルにどのように結びつくかを正当化します。
論文 参考訳(メタデータ) (2020-12-18T04:19:30Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。