論文の概要: Open-Source Fermionic Neural Networks with Ionic Charge Initialization
- arxiv url: http://arxiv.org/abs/2401.10287v1
- Date: Tue, 16 Jan 2024 08:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-28 16:23:10.465369
- Title: Open-Source Fermionic Neural Networks with Ionic Charge Initialization
- Title(参考訳): イオン電荷初期化を用いたオープンソースフェルミオンニューラルネットワーク
- Authors: Shai Pranesh, Shang Zhu, Venkat Viswanathan, Bharath Ramsundar
- Abstract要約: 私たちはFermiNetモデルを標準で広く使われているオープンソースライブラリであるDeepChemに統合します。
イオンの過剰な電子の割り当てや不足に伴う困難を克服する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Finding accurate solutions to the electronic Schr\"odinger equation plays an
important role in discovering important molecular and material energies and
characteristics. Consequently, solving systems with large numbers of electrons
has become increasingly important. Variational Monte Carlo (VMC) methods,
especially those approximated through deep neural networks, are promising in
this regard. In this paper, we aim to integrate one such model called the
FermiNet, a post-Hartree-Fock (HF) Deep Neural Network (DNN) model, into a
standard and widely used open source library, DeepChem. We also propose novel
initialization techniques to overcome the difficulties associated with the
assignment of excess or lack of electrons for ions.
- Abstract(参考訳): 電子シュリンガー方程式の正確な解を見つけることは重要な分子エネルギーと物質エネルギーと特性を発見する上で重要な役割を果たす。
その結果、多数の電子を持つシステムを解くことがますます重要になっている。
変分モンテカルロ法(VMC)、特にディープニューラルネットワークで近似した手法は、この点において有望である。
本稿では,HF後のDeep Neural Network(DNN)モデルであるFermiNetを,標準かつ広く使用されているオープンソースライブラリであるDeepChemに統合することを目的とする。
また,イオンの過剰な電子の割り当てや電子の欠如に伴う困難を克服するための新しい初期化手法を提案する。
関連論文リスト
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
論文 参考訳(メタデータ) (2024-05-23T16:30:51Z) - CHGNet: Pretrained universal neural network potential for
charge-informed atomistic modeling [0.6860131654491484]
新たな機械学習原子間ポテンシャル(MLIP)としてCrystal Hamiltonian Graph Neural Network(CHGNet)を提案する。
CHGNetは、Material Project Trajectoryデータセットのエネルギー、力、応力、磁気モーメントに基づいて事前訓練されている。
従来のMLIPでは観測できない電子自由度を付加したイオン系に関する新たな知見を提供する。
論文 参考訳(メタデータ) (2023-02-28T01:30:06Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - A Self-Attention Ansatz for Ab-initio Quantum Chemistry [3.4161707164978137]
本稿では、自己注意型ウェーブファンクショントランス(Psiformer)を用いたニューラルネットワークアーキテクチャを提案する。
我々は、Psiformerを他のニューラルネットワークのドロップイン代替として使用することができ、計算精度を劇的に向上させることができることを示した。
これは、自己アテンションネットワークが電子間の複雑な量子力学的相関を学習できることを示し、より大きな系の化学計算において前例のない精度に達するための有望な経路であることを示している。
論文 参考訳(メタデータ) (2022-11-24T15:38:55Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Wave function Ansatz (but Periodic) Networks and the Homogeneous
Electron Gas [1.7944372791281356]
均一電子ガスの基底状態波動関数を変動的に検出するニューラルネットワークAnsatzを設計する。
7,14,19電子のスピン偏極相と常磁性相を幅広い密度で研究した。
この貢献により、ニューラルネットワークモデルは、周期的な電子システムに対して、柔軟で高精度なAns"atzeとして確立される。
論文 参考訳(メタデータ) (2022-02-02T14:12:49Z) - Autoregressive neural-network wavefunctions for ab initio quantum
chemistry [3.5987961950527287]
新しい自己回帰型ニューラルネットワーク(ARN)による電子波動関数のパラメータ化
これにより、最大30個のスピン軌道を持つ分子上で電子構造計算を行うことができる。
論文 参考訳(メタデータ) (2021-09-26T13:44:41Z) - Solving the electronic Schr\"odinger equation for multiple nuclear
geometries with weight-sharing deep neural networks [4.1201966507589995]
本稿では,異なる分子ジオメトリに対するニューラルネットワークモデル最適化において,重み共有制約を導入する。
この手法は、同じ分子の核ジオメトリの集合を等級で考えることで最適化を加速することができる。
論文 参考訳(メタデータ) (2021-05-18T08:23:09Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Better, Faster Fermionic Neural Networks [68.61120920231944]
我々はFermiNetにいくつかの改良を加えて、挑戦するシステムのスピードと精度のために新しいレコードを設定できるようにした。
ネットワークのサイズが大きくなると、アルゴンほどの大きさの原子の化学的精度に達するのに十分であることがわかった。
これにより、ビシクロブタンからブタジエンへの挑戦的な遷移においてFermiNetを実行し、シクロブタジエンの自己結合においてパウリネットと比較することができる。
論文 参考訳(メタデータ) (2020-11-13T20:55:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。