A Vision-Language Foundation Model to Enhance Efficiency of Chest X-ray Interpretation
- URL: http://arxiv.org/abs/2401.12208v2
- Date: Wed, 18 Dec 2024 20:56:18 GMT
- Title: A Vision-Language Foundation Model to Enhance Efficiency of Chest X-ray Interpretation
- Authors: Zhihong Chen, Maya Varma, Justin Xu, Magdalini Paschali, Dave Van Veen, Andrew Johnston, Alaa Youssef, Louis Blankemeier, Christian Bluethgen, Stephan Altmayer, Jeya Maria Jose Valanarasu, Mohamed Siddig Eltayeb Muneer, Eduardo Pontes Reis, Joseph Paul Cohen, Cameron Olsen, Tanishq Mathew Abraham, Emily B. Tsai, Christopher F. Beaulieu, Jenia Jitsev, Sergios Gatidis, Jean-Benoit Delbrouck, Akshay S. Chaudhari, Curtis P. Langlotz,
- Abstract summary: Over 1.4 billion chest X-rays (CXRs) are performed annually due to their cost-effectiveness as an initial diagnostic test.<n>This scale of radiological studies provides a significant opportunity to streamline CXR interpretation and documentation.<n>We constructed a large-scale dataset (CheXinstruct), which we utilized to train a vision-language foundation model (CheXagent)
- Score: 22.8169684575764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over 1.4 billion chest X-rays (CXRs) are performed annually due to their cost-effectiveness as an initial diagnostic test. This scale of radiological studies provides a significant opportunity to streamline CXR interpretation and documentation. While foundation models are a promising solution, the lack of publicly available large-scale datasets and benchmarks inhibits their iterative development and real-world evaluation. To overcome these challenges, we constructed a large-scale dataset (CheXinstruct), which we utilized to train a vision-language foundation model (CheXagent). We systematically demonstrated competitive performance across eight distinct task types on our novel evaluation benchmark (CheXbench). Beyond technical validation, we assessed the real-world utility of CheXagent in directly drafting radiology reports. Our clinical assessment with eight radiologists revealed a 36% time saving for residents using CheXagent-drafted reports, while attending radiologists showed no significant time difference editing resident-drafted or CheXagent-drafted reports. The CheXagent-drafted reports improved the writing efficiency of both radiology residents and attending radiologists in 81% and 61% of cases, respectively, without loss of quality. Overall, we demonstrate that CheXagent can effectively perform a variety of CXR interpretation tasks and holds potential to assist radiologists in routine clinical workflows.
Related papers
- ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification [57.22053411719822]
ChestX-Reasoner is a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports.
Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards.
arXiv Detail & Related papers (2025-04-29T16:48:23Z) - Chest X-ray Foundation Model with Global and Local Representations Integration [13.736829173377355]
CheXFound is a vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks.
We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources.
Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels.
arXiv Detail & Related papers (2025-02-07T18:16:15Z) - ReXrank: A Public Leaderboard for AI-Powered Radiology Report Generation [16.687723916901728]
We present ReXrank, a leaderboard and challenge for assessing AI-powered radiology report generation.
Our framework incorporates ReXGradient, the largest test dataset consisting of 10,000 studies.
By providing this standardized evaluation framework, ReXrank enables meaningful comparisons of model performance.
arXiv Detail & Related papers (2024-11-22T18:40:02Z) - CXR-Agent: Vision-language models for chest X-ray interpretation with uncertainty aware radiology reporting [0.0]
We evaluate the publicly available, state of the art, foundational vision-language models for chest X-ray interpretation.
We find that vision-language models often hallucinate with confident language, which slows down clinical interpretation.
We develop an agent-based vision-language approach for report generation using CheXagent's linear probes and BioViL-T's phrase grounding tools.
arXiv Detail & Related papers (2024-07-11T18:39:19Z) - Self-supervised vision-langage alignment of deep learning representations for bone X-rays analysis [53.809054774037214]
This paper proposes leveraging vision-language pretraining on bone X-rays paired with French reports.
It is the first study to integrate French reports to shape the embedding space devoted to bone X-Rays representations.
arXiv Detail & Related papers (2024-05-14T19:53:20Z) - WoLF: Wide-scope Large Language Model Framework for CXR Understanding [8.265578494822087]
We introduce Wide-scope Large Language Model Framework for Chest X-ray understanding.
We capture multi-faceted records of patients, which are utilized for accurate diagnoses in real-world clinical scenarios.
arXiv Detail & Related papers (2024-03-19T06:39:23Z) - MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICX is an approach to capture rich representations in the form of embeddings from chest X-ray images.
We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning.
arXiv Detail & Related papers (2024-03-18T06:19:37Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Longitudinal Data and a Semantic Similarity Reward for Chest X-Ray Report Generation [7.586632627817609]
Radiologists face high burnout rates, partly due to the increasing volume of Chest X-rays (CXRs) requiring interpretation and reporting.
Our proposed CXR report generator integrates elements of the workflow and introduces a novel reward for reinforcement learning.
Results from our study demonstrate that the proposed model generates reports that are more aligned with radiologists' reports than state-of-the-art models.
arXiv Detail & Related papers (2023-07-19T05:41:14Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGen is a radiologist-minded report generation framework across six anatomical regions.
In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases.
We enhance the recognition capacity of the image encoder by analysing images and reports across various regions.
arXiv Detail & Related papers (2023-05-26T07:12:35Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - COVID-Net CXR-2: An Enhanced Deep Convolutional Neural Network Design
for Detection of COVID-19 Cases from Chest X-ray Images [58.35627258364233]
Use of chest X-ray (CXR) imaging as a complimentary screening strategy to RT-PCR testing continues to grow.
We introduce COVID-Net CXR-2, an enhanced deep convolutional neural network design for COVID-19 detection from CXR images.
benchmark dataset composed of 19,203 CXR images from a multinational cohort of 16,656 patients from at least 51 countries.
arXiv Detail & Related papers (2021-05-14T04:29:21Z) - Image Embedding and Model Ensembling for Automated Chest X-Ray
Interpretation [0.0]
We present and study several machine learning approaches to develop automated Chest X-ray diagnostic models.
In particular, we trained several Convolutional Neural Networks (CNN) on the CheXpert dataset.
We used the trained CNNs to compute embeddings of the CXR images, in order to train two sets of tree-based classifiers from them.
arXiv Detail & Related papers (2021-05-05T14:48:59Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Radiological Report Generation For Chest X-Rays With
Weakly-Supervised End-to-End Deep Learning [17.315387269810426]
We built a database containing more than 12,000 CXR scans and radiological reports.
We developed a model based on deep convolutional neural network and recurrent network with attention mechanism.
The model provides automated recognition of given scans and generation of reports.
arXiv Detail & Related papers (2020-06-18T08:12:54Z) - Interpreting Chest X-rays via CNNs that Exploit Hierarchical Disease
Dependencies and Uncertainty Labels [0.33598755777055367]
We present a framework based on deep convolutional neural networks (CNNs) for diagnos-ing the presence of 14 common thoracic diseases and observations.
The proposed method was also evaluated on an inde-pendent test set of the CheXpert competition, containing 500 CXR studies annotated by apanel of 5 experienced radiologists.
arXiv Detail & Related papers (2020-05-25T11:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.