論文の概要: Equivariant Manifold Neural ODEs and Differential Invariants
- arxiv url: http://arxiv.org/abs/2401.14131v2
- Date: Thu, 10 Oct 2024 14:22:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:27:47.807029
- Title: Equivariant Manifold Neural ODEs and Differential Invariants
- Title(参考訳): 等変マニフォールドニューラルネットワークと微分不変量
- Authors: Emma Andersdotter, Daniel Persson, Fredrik Ohlsson,
- Abstract要約: 我々は同変多様体ニューラル常微分方程式(NODE)の明らかな幾何学的枠組みを開発する。
私たちは、対称データに対するモデリング能力を解析するためにそれを使用します。
- 参考スコア(独自算出の注目度): 1.6073704837297416
- License:
- Abstract: In this paper, we develop a manifestly geometric framework for equivariant manifold neural ordinary differential equations (NODEs) and use it to analyse their modelling capabilities for symmetric data. First, we consider the action of a Lie group $G$ on a smooth manifold $M$ and establish the equivalence between equivariance of vector fields, symmetries of the corresponding Cauchy problems, and equivariance of the associated NODEs. We also propose a novel formulation, based on Lie theory for symmetries of differential equations, of the equivariant manifold NODEs in terms of the differential invariants of the action of $G$ on $M$, which provides an efficient parameterisation of the space of equivariant vector fields in a way that is agnostic to both the manifold $M$ and the symmetry group $G$. Second, we construct augmented manifold NODEs, through embeddings into flows on the tangent bundle $TM$, and show that they are universal approximators of diffeomorphisms on any connected $M$. Furthermore, we show that universality persists in the equivariant case and that the augmented equivariant manifold NODEs can be incorporated into the geometric framework using higher-order differential invariants. Finally, we consider the induced action of $G$ on different fields on $M$ and show how it can be used to generalise previous work, on, e.g., continuous normalizing flows, to equivariant models in any geometry.
- Abstract(参考訳): 本稿では,同変多様体型ニューラル常微分方程式(NODE)の幾何学的枠組みを開発し,それを対称データに対するモデリング能力の解析に利用する。
まず、滑らかな多様体 $M$ 上のリー群 $G$ の作用を考え、ベクトル場の同値性、対応するコーシー問題の対称性、それに付随する NODE の同値性を確立する。
また、同変多様体 NODE の微分方程式の対称性に関するリー理論に基づく新しい定式化も提案する:$G$ on $M$ の作用の微分不変量により、多様体 $M$ と対称性群 $G$ の両方に非依存な方法で同変ベクトル場の空間の効率的なパラメータ化を提供する。
次に、拡張多様体 NODE を構築し、接束 $TM$ 上のフローに埋め込み、任意の接続された $M$ 上の微分同相の普遍近似であることを示す。
さらに、同変の場合において普遍性が持続し、高階微分不変量を用いて拡張同変多様体NODEを幾何学的枠組みに組み込むことができることを示す。
最後に、$M$ 上の異なる体に対する$G$ の誘導作用を考察し、それを用いて、例えば、連続正規化フロー(continuous normalization flow)といった以前の作業を任意の幾何学における同変モデルに一般化する方法を示す。
関連論文リスト
- Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction [62.05532524197309]
同変深部モデルでは、分子動力学シミュレーションにおいて原子ポテンシャルと力場を正確に予測できることが示されている。
本研究では、同変アーキテクチャの同変関数を解析し、PACEと呼ばれる新しい同変ネットワークを導入する。
一般的なベンチマークで実験されたように、PACEは原子エネルギーと力場の予測における最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-06T19:34:40Z) - Equivariant score-based generative models provably learn distributions with symmetries efficiently [7.90752151686317]
実験的な研究により、対称性を生成モデルに組み込むことで、より優れた一般化とサンプリング効率が得られることが示されている。
我々は,ある群対称性に対して不変な分布を学習するためのスコアベース生成モデル(SGM)の最初の理論的解析と保証を提供する。
論文 参考訳(メタデータ) (2024-10-02T05:14:28Z) - Geometric Generative Models based on Morphological Equivariant PDEs and GANs [3.6498648388765513]
群畳み込みニューラルネットワーク(G-CNN)のための等変偏微分方程式(PDE)に基づく幾何学的生成モデルを提案する。
提案手法は, PDE-G-CNNにおける形態的同変畳み込みを用いて, GM-GAN (Geological morphological GAN) を求める。
予備的な結果は、GM-GANモデルが古典的GANより優れていることを示している。
論文 参考訳(メタデータ) (2024-03-22T01:02:09Z) - A Geometric Insight into Equivariant Message Passing Neural Networks on
Riemannian Manifolds [1.0878040851638]
座標独立な特徴体に付随する計量は、主バンドルの原計量を最適に保存すべきである。
一定の時間ステップで拡散方程式の流れを離散化することにより, 多様体上のメッセージパッシング方式を得る。
グラフ上の高次拡散過程の離散化は、同変 GNN の新しい一般クラスをもたらす。
論文 参考訳(メタデータ) (2023-10-16T14:31:13Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
ラベル付きデータセットに存在する連続した対称性群の検出と同定のためのディープラーニングアルゴリズムを設計する。
完全に接続されたニューラルネットワークを用いて、変換対称性と対応するジェネレータをモデル化する。
また,Lie群とその性質の数学的研究に機械学習アプローチを使うための扉を開く。
論文 参考訳(メタデータ) (2023-01-13T16:25:25Z) - Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
Group Convolution [90.67482899242093]
近年, 入力の回転と変換において等価な3次元データに対して, ニューラルネットワークを設計するための幅広い手法が提案されている。
両手法とその等価性を詳細に解析し,その2つの構成をマルチビュー畳み込みネットワークに関連付ける。
また、同値原理から新しいTFN非線形性を導出し、実用的なベンチマークデータセット上でテストする。
論文 参考訳(メタデータ) (2022-11-29T03:42:11Z) - Equivariant Discrete Normalizing Flows [10.867162810786361]
離散層を用いた等変正規化フローの構築に着目する。
2つの新しい同変フロー:$G$-カップリングフローと$G$-Residualフローを導入する。
我々の構成である$G$-Residual Flowsも普遍的であり、$G$-equivariant diffeomorphismが$G$-Residual Flowによって正確にマッピング可能であることを証明している。
論文 参考訳(メタデータ) (2021-10-16T20:16:00Z) - Equivariant Manifold Flows [48.21296508399746]
等変多様体フローを通じて任意の多様体上の対称性不変分布を学習するための理論的基礎を置く。
量子場理論の文脈で、SU(n)$以上のゲージ不変密度を学習するためにこの手法の実用性を実証する。
論文 参考訳(メタデータ) (2021-07-19T03:04:44Z) - Geometric Deep Learning and Equivariant Neural Networks [0.9381376621526817]
幾何学的深層学習の数学的基礎を調査し,群同変とゲージ同変ニューラルネットワークに着目した。
任意の多様体 $mathcalM$ 上のゲージ同変畳み込みニューラルネットワークを、構造群 $K$ の主バンドルと、関連するベクトルバンドルの切断間の同変写像を用いて開発する。
セマンティックセグメンテーションやオブジェクト検出ネットワークなど,このフォーマリズムのいくつかの応用を解析する。
論文 参考訳(メタデータ) (2021-05-28T15:41:52Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
我々は微分幾何学からのツールと洞察を用いて、直交rnnの新しい視点を提供する。
直交RNNは、発散自由ベクトル場の空間における最適化と見なすことができる。
この観測に動機づけられて、ベクトル場全体の空間にまたがる新しいリカレントモデルの研究を行う。
論文 参考訳(メタデータ) (2021-02-18T19:39:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。