論文の概要: Coseparable Nonnegative Tensor Factorization With T-CUR Decomposition
- arxiv url: http://arxiv.org/abs/2401.16836v3
- Date: Wed, 22 Jan 2025 16:09:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:27:57.189869
- Title: Coseparable Nonnegative Tensor Factorization With T-CUR Decomposition
- Title(参考訳): T-CUR分解による非負転位因子の分離
- Authors: Juefei Chen, Longxiu Huang, Yimin Wei,
- Abstract要約: 非負行列因子化(NMF)は、データから意味のある特徴を抽出する重要な教師なし学習手法である。
本研究では,コセプタブルコアを選択するための交互選択法を提案する。
その結果, 分離可能なNMFと比較して, 分離可能なNTFの有効性が示された。
- 参考スコア(独自算出の注目度): 2.013220890731494
- License:
- Abstract: Nonnegative Matrix Factorization (NMF) is an important unsupervised learning method to extract meaningful features from data. To address the NMF problem within a polynomial time framework, researchers have introduced a separability assumption, which has recently evolved into the concept of coseparability. This advancement offers a more efficient core representation for the original data. However, in the real world, the data is more natural to be represented as a multi-dimensional array, such as images or videos. The NMF's application to high-dimensional data involves vectorization, which risks losing essential multi-dimensional correlations. To retain these inherent correlations in the data, we turn to tensors (multidimensional arrays) and leverage the tensor t-product. This approach extends the coseparable NMF to the tensor setting, creating what we term coseparable Nonnegative Tensor Factorization (NTF). In this work, we provide an alternating index selection method to select the coseparable core. Furthermore, we validate the t-CUR sampling theory and integrate it with the tensor Discrete Empirical Interpolation Method (t-DEIM) to introduce an alternative, randomized index selection process. These methods have been tested on both synthetic and facial analysis datasets. The results demonstrate the efficiency of coseparable NTF when compared to coseparable NMF.
- Abstract(参考訳): 非負行列因子化(NMF)は、データから意味のある特徴を抽出する重要な教師なし学習手法である。
多項式時間フレームワークにおけるNMF問題に対処するため、研究者は分離可能性の仮定を導入し、最近コセパビリティの概念へと進化した。
この進歩は、元のデータに対してより効率的なコア表現を提供する。
しかし、現実の世界では、画像やビデオのような多次元の配列として表される方が自然である。
NMFの高次元データへの応用にはベクトル化が関係しており、必須の多次元相関が失われるリスクがある。
これらのデータに固有の相関を維持するために、テンソル(多次元配列)に目を向け、テンソル t-積を利用する。
このアプローチは、分離不能なNMFをテンソル設定に拡張し、分離不能な非負テンソル因子化(NTF)と呼ばれるものを作成する。
本研究では,コセプタブルコアを選択するための交互インデックス選択法を提案する。
さらに、t-CURサンプリング理論を検証し、テンソル離散経験補間法(t-DEIM)と統合し、別のランダム化インデックス選択プロセスを導入する。
これらの手法は、合成分析データセットと顔分析データセットの両方でテストされている。
その結果, 分離可能なNMFと比較して, 分離可能なNTFの有効性が示された。
関連論文リスト
- Stratified-NMF for Heterogeneous Data [8.174199227297514]
本研究では,階層依存統計量と共有トピック行列を同時に学習する改良NMF目標であるStratified-NMFを提案する。
本手法を実世界の3つのデータセットに適用し,その特徴を実証的に検討する。
論文 参考訳(メタデータ) (2023-11-17T00:34:41Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Co-Separable Nonnegative Matrix Factorization [20.550794776914508]
非負行列分解(NMF)はパターン認識の分野で人気があるモデルである。
我々はこのNMFをCoS-NMF(CoS-NMF)と呼ぶ。
CoS-NMFの最適化モデルを提案し,その解法に置換高速勾配法を適用した。
論文 参考訳(メタデータ) (2021-09-02T07:05:04Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
NMF(Nonnegative Matrix Factorization)は、広く使用されているデータ分析技術であり、多くの実際のタスクで印象的な結果をもたらしました。
本研究では,上述の問題に対処するために,EMMF (Entropy Minimizing Matrix Factorization framework) を開発した。
通常、外れ値が通常のサンプルよりもはるかに小さいことを考えると、行列分解のために新しいエントロピー損失関数が確立される。
論文 参考訳(メタデータ) (2021-03-24T21:08:43Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Sparse Separable Nonnegative Matrix Factorization [22.679160149512377]
非負行列分解(NMF)の新しい変種を提案する。
分離性は、第1NMF因子の列が入力行列の列に等しいのに対して、スパース性は第2NMF因子の列がスパースであることが要求される。
雑音のない環境では、軽微な仮定の下で、我々のアルゴリズムが真に根底にある情報源を復元することを証明する。
論文 参考訳(メタデータ) (2020-06-13T03:52:29Z) - Ordinal Non-negative Matrix Factorization for Recommendation [9.431454966446076]
我々は、OrdNMFと呼ばれる順序データに対する新しい非負行列分解法(NMF)を導入する。
OrdNMFはBernoulli-Poisson Factorization (BePoF)とPoisson Factorization (PF)を二項化データに適用する潜在因子モデルである。
論文 参考訳(メタデータ) (2020-06-01T16:02:11Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。