論文の概要: Quantum Transfer Learning with Adversarial Robustness for Classification
of High-Resolution Image Datasets
- arxiv url: http://arxiv.org/abs/2401.17009v1
- Date: Tue, 30 Jan 2024 13:45:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 15:08:58.762470
- Title: Quantum Transfer Learning with Adversarial Robustness for Classification
of High-Resolution Image Datasets
- Title(参考訳): 高分解能画像データセットの分類のための逆ロバスト性をもつ量子伝達学習
- Authors: Amena Khatun and Muhammad Usman
- Abstract要約: 本稿では,量子変動回路をImageNetデータセット上に事前学習した古典的機械学習ネットワークと統合する量子トランスファー学習アーキテクチャを提案する。
転送学習を伴わずに、古典的および量子機械学習に対するQTLアプローチの優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.7246639313869705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of quantum machine learning to large-scale high-resolution
image datasets is not yet possible due to the limited number of qubits and
relatively high level of noise in the current generation of quantum devices. In
this work, we address this challenge by proposing a quantum transfer learning
(QTL) architecture that integrates quantum variational circuits with a
classical machine learning network pre-trained on ImageNet dataset. Through a
systematic set of simulations over a variety of image datasets such as Ants &
Bees, CIFAR-10, and Road Sign Detection, we demonstrate the superior
performance of our QTL approach over classical and quantum machine learning
without involving transfer learning. Furthermore, we evaluate the adversarial
robustness of QTL architecture with and without adversarial training,
confirming that our QTL method is adversarially robust against data
manipulation attacks and outperforms classical methods.
- Abstract(参考訳): 量子機械学習を大規模高解像度画像データセットに適用することは、量子ビット数の制限と、量子デバイスの現世代の比較的高いノイズのため、まだ不可能である。
本研究では、量子変動回路と、ImageNetデータセット上に事前トレーニングされた古典的機械学習ネットワークを統合する量子トランスファーラーニング(QTL)アーキテクチャを提案する。
我々は、Ants & Bees、CIFAR-10、Road Sign Detectionなどのさまざまな画像データセットに対するシステマティックなシミュレーションを通じて、転移学習を伴わずに古典的および量子機械学習に対するQTLアプローチの優れた性能を実証する。
さらに,QTL手法がデータ操作攻撃に対して逆向きに頑健であり,古典的手法よりも優れていたことを確認し,QTLアーキテクチャの対角的堅牢性を評価する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Hybrid Classical-Quantum architecture for vectorised image classification of hand-written sketches [0.0]
量子機械学習は、別の方法でデータを学ぶために量子現象をどのように活用するかを研究する。
近年の進歩は、ハイブリッド古典量子モデルは、アーキテクチャの複雑さが低い場合に競争性能を達成できることを示唆している。
本稿では,QMLモデルのテストベッドとして,スケッチ描画のベクトルベース表現を提案する。
論文 参考訳(メタデータ) (2024-07-08T21:51:20Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Towards Transfer Learning for Large-Scale Image Classification Using
Annealing-based Quantum Boltzmann Machines [7.106829260811707]
本稿では,Quantum Annealing (QA) を用いた画像分類手法を提案する。
本稿では,アニール型量子ボルツマンマシンをハイブリッド量子古典パイプラインの一部として用いることを提案する。
提案手法は,テスト精度とAUC-ROC-Scoreの点で,古典的ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-27T16:07:49Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Quantum-enhanced data classification with a variational entangled sensor
network [3.1083620257082707]
絡み合ったセンサーネットワーク(SLAEN)によって補助される監視学習は、古典的な機械学習アルゴリズムによって訓練されたVQCを利用する、独立したパラダイムである。
我々の研究は、NISQ時代における量子化データ処理の新たな道のりを開拓している。
論文 参考訳(メタデータ) (2020-06-22T01:22:33Z) - Higher-Order Quantum Reservoir Computing [0.0]
本稿では,線形フィードバックなどの古典的接続を介して相互に通信する,複数だが小さな量子システムからなるハイブリッド量子古典的フレームワークを提案する。
大規模非線形力学系をエミュレートする際のフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2020-06-16T08:54:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。