論文の概要: Randomly Monitored Quantum Codes
- arxiv url: http://arxiv.org/abs/2402.00145v1
- Date: Wed, 31 Jan 2024 19:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 17:39:29.082349
- Title: Randomly Monitored Quantum Codes
- Title(参考訳): ランダム監視量子符号
- Authors: Dongjin Lee and Beni Yoshida
- Abstract要約: 近年の研究では、量子測定自体が新しい量子現象を引き起こすことが示されている。
例えば、監視されたランダム回路は、ランダムなユニタリ回路よりも高速に長距離の絡み合いを生成することができる。
特に、大規模な量子誤り訂正符号に対して、ランダムな単一量子ビットパウリ測定によって符号化された情報を破壊することは不可能であることを示す。
- 参考スコア(独自算出の注目度): 8.557392136621894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum measurement has conventionally been regarded as the final step in
quantum information processing, which is essential for reading out the
processed information but collapses the quantum state into a classical state.
However, recent studies have shown that quantum measurement itself can induce
novel quantum phenomena. One seminal example is a monitored random circuit,
which can generate long-range entanglement faster than a random unitary
circuit. Inspired by these results, in this paper, we address the following
question: When quantum information is encoded in a quantum error-correcting
code, how many physical qubits should be randomly measured to destroy the
encoded information? We investigate this question for various quantum
error-correcting codes and derive the necessary and sufficient conditions for
destroying the information through measurements. In particular, we demonstrate
that for a large class of quantum error-correcitng codes, it is impossible to
destroy the encoded information through random single-qubit Pauli measurements
when a tiny portion of physical qubits is still unmeasured. Our results not
only reveal the extraordinary robustness of quantum codes under measurement
decoherence, but also suggest potential applications in quantum information
processing tasks.
- Abstract(参考訳): 量子計測は、従来は量子情報処理の最終段階と考えられており、処理された情報を読み出すのに必須であるが、量子状態は古典状態へと崩壊する。
しかし、近年の研究では、量子測定自体が新しい量子現象を誘発できることが示されている。
モニターされたランダム回路は、ランダムなユニタリ回路よりも高速に長距離の絡み合いを生成することができる。
量子情報が量子誤り訂正符号にエンコードされている場合、エンコードされた情報を破壊するために、何つの物理量子ビットをランダムに測定すべきなのか?
様々な量子誤り訂正符号に対するこの質問を調査し、測定によって情報を破壊するために必要な十分条件を導出する。
特に,量子誤り訂正符号の大規模なクラスでは,物理キュービットのごく一部がまだ測定されていない場合,ランダムな単一キュービットパウリ計測によって符号化情報を破棄することは不可能であることを示す。
我々の結果は、測定デコヒーレンスの下での量子コードの異常な堅牢性だけでなく、量子情報処理タスクにおける潜在的な応用も示唆している。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Sample-size-reduction of quantum states for the noisy linear problem [0.0]
本稿では,量子ランダムアクセスメモリ(QRAM)の量子サンプルサイズを線形次数に削減できることを述べる。
ノイズの多い線形問題に対して,より短い実行時間を実現する。
論文 参考訳(メタデータ) (2023-01-08T05:53:17Z) - Quantum Anomaly Detection with a Spin Processor in Diamond [10.0891240648429]
3量子ビット量子プロセッサを用いてオーディオサンプルを符号化した量子状態の異常検出を実験的に実証した。
数個の通常のサンプルで量子マシンを訓練することにより、量子マシンは最小エラー率15.4%で異常サンプルを検出することができる。
論文 参考訳(メタデータ) (2022-01-25T12:18:01Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
量子情報処理では、量子演算はしばしば古典的なデータをもたらす測定とともに処理される。
非単位の動的プロセスは、一般的な量子チャネルの記述が時間進化を記述するのに失敗するシステムで起こりうる。
量子測定は古典的な出力と測定後の量子状態の両方を計測するいわゆる量子機器によって正しく扱われる。
論文 参考訳(メタデータ) (2021-10-13T18:00:13Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Quantum Algorithm for Quantum State Discrimination via Partial Negation
and Weak Measurement [1.2691047660244335]
量子状態判別問題を解くために、弱い測定と部分否定を用いた量子アルゴリズムを提案する。
提案アルゴリズムは、高い確率で未知の量子ビットの状態を決定することができる。
論文 参考訳(メタデータ) (2021-02-23T21:18:19Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
量子ウォークスを用いて量子情報拡散パターンを探索する量子探索プロトコルを設計する。
我々は、異常や古典的輸送を調査するために、コヒーレントな静的および動的障害に焦点を当てる。
以上の結果から,複雑なネットワークで発生する欠陥や摂動の情報を読み取る装置として,量子ウォーク(Quantum Walk)が考えられる。
論文 参考訳(メタデータ) (2020-10-20T20:03:19Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
現在の量子コンピューティングデバイスは、ノイズの多い中間スケール量子$(NISQ$)$デバイスである。
量子トモグラフィーは、観測可能な完全な集合によって量子系の密度行列を再構築しようとする。
本稿では、未知の可観測物の値を予測するために、最大情報エントロピーに基づく量子トモグラフィーの代替手法を提案する。
論文 参考訳(メタデータ) (2020-09-02T04:39:45Z) - Quantum error-correcting codes and their geometries [0.6445605125467572]
本稿では,量子誤り訂正の数学的および幾何学について紹介する。
量子符号は、まず量子ビット安定化器符号、次に量子ビット非安定化器符号、そして最後に局所次元の高い符号である。
これにより、コードのパラメータを効率的に推論し、同じパラメータを持つコード間で等価性を推論し、特定のパラメータの有効性を推論するのに有用なツールを提供する。
論文 参考訳(メタデータ) (2020-07-12T13:57:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。