論文の概要: Can LLMs perform structured graph reasoning?
- arxiv url: http://arxiv.org/abs/2402.01805v3
- Date: Thu, 18 Apr 2024 12:04:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 20:29:53.270739
- Title: Can LLMs perform structured graph reasoning?
- Title(参考訳): LLMは構造化グラフ推論を実行できるか?
- Authors: Palaash Agrawal, Shavak Vasania, Cheston Tan,
- Abstract要約: LLM(Pretrained Large Language Models)は、言語ベースのプロンプトだけで様々な推論能力を示す。
本稿では,半構造化タスクのプロキシとして,様々なグラフ推論タスクを設計する。
上記の課題に対して,5種類のインストラクト微細化LDM (GPT-4, GPT-3.5, Claude-2, Llama-2, Palm-2) をベンチマークした。
- 参考スコア(独自算出の注目度): 4.676784872259775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained Large Language Models (LLMs) have demonstrated various reasoning capabilities through language-based prompts alone, particularly in unstructured task settings (tasks purely based on language semantics). However, LLMs often struggle with structured tasks, because of the inherent incompatibility of input representation. Reducing structured tasks to uni-dimensional language semantics often renders the problem trivial. Keeping the trade-off between LLM compatibility and structure complexity in mind, we design various graph reasoning tasks as a proxy to semi-structured tasks in this paper, in order to test the ability to navigate through representations beyond plain text in various LLMs. Particularly, we design 10 distinct problems of graph traversal, each representing increasing levels of complexity, and benchmark 5 different instruct-finetuned LLMs (GPT-4, GPT-3.5, Claude-2, Llama-2 and Palm-2) on the aforementioned tasks. Further, we analyse the performance of models across various settings such as varying sizes of graphs as well as different forms of k-shot prompting. We highlight various limitations, biases and properties of LLMs through this benchmarking process, such as an inverse relation to the average degrees of freedom of traversal per node in graphs, the overall negative impact of k-shot prompting on graph reasoning tasks, and a positive response bias which prevents LLMs from identifying the absence of a valid solution. Finally, we introduce a new prompting technique specially designed for graph traversal tasks (PathCompare), which demonstrates a notable increase in the performance of LLMs in comparison to standard prompting techniques such as Chain-of-Thought (CoT).
- Abstract(参考訳): 事前訓練された大規模言語モデル(LLM)は、言語ベースのプロンプトだけで、特に非構造化タスク設定(純粋に言語意味論に基づくタスク)において、様々な推論能力を示している。
しかし、LLMは入力表現の固有の非互換性のため、しばしば構造化されたタスクと競合する。
構造化されたタスクを一次元の言語セマンティクスに還元することは、しばしば問題を簡単なものにする。
本稿では,LLMとの互換性と構造複雑性を念頭に置いて,様々なグラフ推論タスクを半構造化タスクのプロキシとして設計する。
特に,グラフトラバーサルの10の異なる問題を設計し,それぞれが複雑性のレベルを表わすとともに,上記のタスクに対して5つの異なるインストラクトファイントゥンドLLM(GPT-4,GPT-3.5,Claude-2,Llama-2,Palm-2)をベンチマークする。
さらに、グラフのサイズやkショットプロンプトの形式など、さまざまな設定でモデルの性能を分析する。
例えば、グラフ内のノード毎のトラバース自由度の平均値に対する逆関係、グラフ推論タスクにおけるkショットの全体的な負の影響、LLMが有効な解の欠如を識別するのを防ぐ正の応答バイアスなどである。
最後に,グラフトラバーサルタスク(PathCompare)に特化して設計された新しいプロンプト技術を導入し,Chain-of-Thought(CoT)などの標準プロンプト技術と比較してLCMの性能が顕著に向上したことを示す。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Can LLM Graph Reasoning Generalize beyond Pattern Memorization? [46.93972334344908]
我々は,大規模言語モデル (LLM) が,合成学習データにおける意味的,数値的,構造的,推論パターンを超えうるか否かを評価し,実世界のグラフベースタスクにおける有用性を向上させる。
トレーニング後のアライメントが現実世界のタスクに最も有望であるのに対して、LLMグラフの推論をパターンを超えて行うことは、依然としてオープンな研究課題である。
論文 参考訳(メタデータ) (2024-06-23T02:59:15Z) - LinkGPT: Teaching Large Language Models To Predict Missing Links [23.57145845001286]
大規模言語モデル(LLM)は、様々な言語やビジョンタスクにおいて有望な結果を示している。
近年、グラフベースのタスク、特にテキスト分散グラフ(TAG)にLLMを適用することへの関心が高まっている。
論文 参考訳(メタデータ) (2024-06-07T04:54:36Z) - Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement [11.363521189714504]
大規模言語モデル(LLM)は,タスク命令の語彙変化に対して過敏であることを示す。
プロンプト語彙強調(COPLE)のためのブラックボックス組合せ最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-31T08:53:59Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
本稿では,大規模言語モデル(LLM)の多段階推論能力向上を目的としたフレームワークであるStructure Guided Promptを紹介する。
実験の結果,このフレームワークはLLMの推論能力を大幅に向上し,より広い範囲の自然言語シナリオを拡張できることがわかった。
論文 参考訳(メタデータ) (2024-02-20T22:56:23Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
大型言語モデル (LLM) は暗黙的なグラフィカル構造を持つ様々なタスクに採用されている。
自然言語をシミュレーションするグラフベース問題解決のベンチマークであるNLGraphを提案する。
論文 参考訳(メタデータ) (2023-05-17T08:29:21Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Selection-Inference: Exploiting Large Language Models for Interpretable
Logical Reasoning [14.663216851932646]
言語モデルは1ステップの推論タスクでかなりうまく機能する傾向があるが、より複雑な問題を解決するために複数の推論ステップをチェーン化するのに苦労している。
本稿では,事前学習したLLMを汎用処理モジュールとして活用する選択推論(SI)フレームワークを提案する。
5ショットの一般化設定でSIフレームワーク内で使用する 7B パラメータ LLM が微調整なしで,100% 以上の性能向上が得られることを示す。
論文 参考訳(メタデータ) (2022-05-19T17:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。