論文の概要: Challenges in Training PINNs: A Loss Landscape Perspective
- arxiv url: http://arxiv.org/abs/2402.01868v2
- Date: Mon, 3 Jun 2024 23:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 13:17:49.426264
- Title: Challenges in Training PINNs: A Loss Landscape Perspective
- Title(参考訳): PINNの育成における課題--景観の喪失をめざして
- Authors: Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, Madeleine Udell,
- Abstract要約: 本稿では,物理インフォームドニューラルネットワーク(PINN)の学習における課題について考察する。
本稿では, PINN損失関数の最小化の難しさについて検討する。
NysNewton-CG(NysNewton-CG)を新たに導入し,PINNの性能を大幅に改善した。
- 参考スコア(独自算出の注目度): 16.89714536706181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores challenges in training Physics-Informed Neural Networks (PINNs), emphasizing the role of the loss landscape in the training process. We examine difficulties in minimizing the PINN loss function, particularly due to ill-conditioning caused by differential operators in the residual term. We compare gradient-based optimizers Adam, L-BFGS, and their combination Adam+L-BFGS, showing the superiority of Adam+L-BFGS, and introduce a novel second-order optimizer, NysNewton-CG (NNCG), which significantly improves PINN performance. Theoretically, our work elucidates the connection between ill-conditioned differential operators and ill-conditioning in the PINN loss and shows the benefits of combining first- and second-order optimization methods. Our work presents valuable insights and more powerful optimization strategies for training PINNs, which could improve the utility of PINNs for solving difficult partial differential equations.
- Abstract(参考訳): 本稿では,物理情報ニューラルネットワーク(PINN)の学習における課題について考察し,学習過程における損失景観の役割を強調した。
本稿では, PINN損失関数の最小化の難しさについて検討する。
我々は、勾配に基づく最適化器AdamとL-BFGSとそれらの組み合わせAdam+L-BFGSを比較し、Adam+L-BFGSの優位性を示し、新しい二階最適化器NysNewton-CG(NNCG)を導入し、PINNの性能を大幅に向上させた。
理論的には、不条件微分演算子と不条件演算子のPINN損失の関係を解明し、一階と二階の最適化法を組み合わせる利点を示す。
我々の研究は、PINNを訓練するための貴重な洞察とより強力な最適化戦略を示し、難しい偏微分方程式を解くためのPINNの有用性を向上させることができる。
関連論文リスト
- Physics-Informed Neural Networks: Minimizing Residual Loss with Wide Networks and Effective Activations [5.731640425517324]
特定の条件下では、広いニューラルネットワークによってPINNの残留損失を世界規模で最小化できることを示す。
良好な高次導関数を持つ活性化関数は、残留損失を最小限に抑える上で重要な役割を果たす。
確立された理論は、PINNの効果的な活性化関数の設計と選択の道を開く。
論文 参考訳(メタデータ) (2024-05-02T19:08:59Z) - Densely Multiplied Physics Informed Neural Networks [2.0853213407621]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)を扱う大きな可能性を示している
本稿では,PINNの性能向上のためにニューラルネットワークアーキテクチャを改良する。
本稿では,隠れたレイヤの出力と隠れたレイヤの出力とを乗算する,密乗型PINN(DM-PINN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-02-06T20:45:31Z) - Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks [22.348887008547653]
この研究はRandom Linear Projections (RLP)損失を導入し、これはデータ内の幾何学的関係を利用してトレーニング効率を向上させる新しいアプローチである。
ベンチマークデータセットと合成例を用いて実施した経験的評価では、従来の損失関数でトレーニングされたニューラルネットワークは、従来の損失関数でトレーニングされたニューラルネットワークよりも優れていたことが示されている。
論文 参考訳(メタデータ) (2023-11-21T05:22:39Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
敵の訓練は、敵の攻撃に対するモデルの堅牢性を改善するために広く実証されてきた。
グラフ解析問題におけるGNNの一般化能力をどのように改善するかは、まだ不明である。
我々は、重みと特徴量の観点から共振器摂動(CAP)最適化問題を構築し、重みと特徴の損失を交互に平らにする交互対振器摂動アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-28T02:28:13Z) - Multi-Objective Loss Balancing for Physics-Informed Deep Learning [0.0]
PINNを効果的に訓練するために、複数の競合損失関数の組み合わせを正しく重み付けする役割を観察する。
本稿では,ReLoBRaLoと呼ばれるPINNの自己適応的損失分散を提案する。
シミュレーションにより、ReLoBRaLoトレーニングは、他のバランシング手法によるPINNのトレーニングよりもはるかに高速で精度の高いことが示されている。
論文 参考訳(メタデータ) (2021-10-19T09:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。