論文の概要: DiffGrad for Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2409.03239v1
- Date: Thu, 5 Sep 2024 04:39:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 21:57:04.939801
- Title: DiffGrad for Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークのためのDiffGrad
- Authors: Jamshaid Ul Rahman, Nimra,
- Abstract要約: バーガーズ方程式(英: Burgers' equation)は流体力学の基本方程式であり、PINNで広く用いられている。
本稿では,DiffGradをPINNに組み込むことで,バーガースの方程式を解く新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) are regarded as state-of-the-art tools for addressing highly nonlinear problems based on partial differential equations. Despite their broad range of applications, PINNs encounter several performance challenges, including issues related to efficiency, minimization of computational cost, and enhancement of accuracy. Burgers' equation, a fundamental equation in fluid dynamics that is extensively used in PINNs, provides flexible results with the Adam optimizer that does not account for past gradients. This paper introduces a novel strategy for solving Burgers' equation by incorporating DiffGrad with PINNs, a method that leverages the difference between current and immediately preceding gradients to enhance performance. A comprehensive computational analysis is conducted using optimizers such as Adam, Adamax, RMSprop, and DiffGrad to evaluate and compare their effectiveness. Our approach includes visualizing the solutions over space at various time intervals to demonstrate the accuracy of the network. The results show that DiffGrad not only improves the accuracy of the solution but also reduces training time compared to the other optimizers.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は偏微分方程式に基づく高非線形問題に対処するための最先端のツールであると考えられている。
その幅広い応用にもかかわらず、PINNは効率性、計算コストの最小化、精度の向上など、いくつかのパフォーマンス上の課題に直面している。
バーガースの方程式(英: Burgers' equation)は流体力学の基本方程式であり、PINNで広く使われているが、過去の勾配を考慮しないアダム最適化器を用いて柔軟な結果を与える。
本稿では,DiffGradをPINNに組み込むことでバーガースの方程式を解く新しい手法を提案する。
Adam, Adamax, RMSprop, DiffGradなどのオプティマイザを用いて総合的な計算解析を行い, その有効性を評価し, 比較する。
提案手法は,ネットワークの精度を示すために,様々な時間間隔で空間上の解を可視化することを含む。
その結果、DiffGradはソリューションの精度を向上するだけでなく、他のオプティマイザと比較してトレーニング時間を短縮することがわかった。
関連論文リスト
- Densely Multiplied Physics Informed Neural Networks [1.8554335256160261]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)を扱う大きな可能性を示している
本稿では,PINNの性能向上のためにニューラルネットワークアーキテクチャを改良する。
本稿では,隠れたレイヤの出力と隠れたレイヤの出力とを乗算する,密乗型PINN(DM-PINN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-02-06T20:45:31Z) - Burgers' pinns with implicit euler transfer learning [0.0]
バーガーズ方程式は、いくつかの現象の計算モデルにおいて確立されたテストケースである。
本稿では,バーガース方程式を解くために,暗黙のオイラー変換学習手法を用いた物理情報ニューラルネットワーク(PINN)の適用について述べる。
論文 参考訳(メタデータ) (2023-10-23T20:15:45Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。