Counterfactual Explanations of Black-box Machine Learning Models using Causal Discovery with Applications to Credit Rating
- URL: http://arxiv.org/abs/2402.02678v2
- Date: Sat, 27 Apr 2024 03:11:26 GMT
- Title: Counterfactual Explanations of Black-box Machine Learning Models using Causal Discovery with Applications to Credit Rating
- Authors: Daisuke Takahashi, Shohei Shimizu, Takuma Tanaka,
- Abstract summary: Several XAI models consider causal relationships to explain models by examining the input-output relationships of prediction models and the dependencies between features.
The majority of these models have been based their explanations on counterfactual probabilities, assuming that the causal graph is known.
This study proposed a novel XAI framework that relaxed the constraint that the causal graph is known.
- Score: 4.200230734911261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable artificial intelligence (XAI) has helped elucidate the internal mechanisms of machine learning algorithms, bolstering their reliability by demonstrating the basis of their predictions. Several XAI models consider causal relationships to explain models by examining the input-output relationships of prediction models and the dependencies between features. The majority of these models have been based their explanations on counterfactual probabilities, assuming that the causal graph is known. However, this assumption complicates the application of such models to real data, given that the causal relationships between features are unknown in most cases. Thus, this study proposed a novel XAI framework that relaxed the constraint that the causal graph is known. This framework leveraged counterfactual probabilities and additional prior information on causal structure, facilitating the integration of a causal graph estimated through causal discovery methods and a black-box classification model. Furthermore, explanatory scores were estimated based on counterfactual probabilities. Numerical experiments conducted employing artificial data confirmed the possibility of estimating the explanatory score more accurately than in the absence of a causal graph. Finally, as an application to real data, we constructed a classification model of credit ratings assigned by Shiga Bank, Shiga prefecture, Japan. We demonstrated the effectiveness of the proposed method in cases where the causal graph is unknown.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
We train a supervised model that learns to predict a larger causal graph from the outputs of classical causal discovery algorithms run over subsets of variables.
Our approach is enabled by the observation that typical errors in the outputs of classical methods remain comparable across datasets.
Experiments on real and synthetic data demonstrate that this model maintains high accuracy in the face of misspecification or distribution shift.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
We study the problem of counterfactual explanation generation on graphs.
A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed.
We propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models.
arXiv Detail & Related papers (2022-10-16T04:35:32Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust prediction methods.
We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization.
We propose a general framework for distributional robustness with respect to intervention-induced distributions.
arXiv Detail & Related papers (2021-10-04T13:12:11Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Bayesian Model Averaging for Data Driven Decision Making when Causality
is Partially Known [0.0]
We use ensemble methods like Bayesian Model Averaging (BMA) to infer set of causal graphs.
We provide decisions by computing the expected value and risk of potential interventions explicitly.
arXiv Detail & Related papers (2021-05-12T01:55:45Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - Causal Inference with Deep Causal Graphs [0.0]
Parametric causal modelling techniques rarely provide functionality for counterfactual estimation.
Deep Causal Graphs is an abstract specification of the required functionality for a neural network to model causal distributions.
We demonstrate its expressive power in modelling complex interactions and showcase applications to machine learning explainability and fairness.
arXiv Detail & Related papers (2020-06-15T13:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.