論文の概要: Deconstructing the Goldilocks Zone of Neural Network Initialization
- arxiv url: http://arxiv.org/abs/2402.03579v2
- Date: Wed, 5 Jun 2024 02:44:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 03:25:10.397835
- Title: Deconstructing the Goldilocks Zone of Neural Network Initialization
- Title(参考訳): ニューラルネットワーク初期化におけるゴールディロックゾーンの分解
- Authors: Artem Vysogorets, Anna Dawid, Julia Kempe,
- Abstract要約: 等質ニューラルネットワークにおけるGoldilocksゾーンの包括的解析について述べる。
本研究では, 正曲率の過大さをモデル信頼度, 初期損失の低さ, 以前は知られていなかったクロスエントロピー損失勾配に関連付ける。
私たちは、強力なモデルパフォーマンスがGoldilocksゾーンと完全に一致していないことに気付き、この関係についてさらなる研究を要求します。
- 参考スコア(独自算出の注目度): 6.349503549199403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The second-order properties of the training loss have a massive impact on the optimization dynamics of deep learning models. Fort & Scherlis (2019) discovered that a large excess of positive curvature and local convexity of the loss Hessian is associated with highly trainable initial points located in a region coined the "Goldilocks zone". Only a handful of subsequent studies touched upon this relationship, so it remains largely unexplained. In this paper, we present a rigorous and comprehensive analysis of the Goldilocks zone for homogeneous neural networks. In particular, we derive the fundamental condition resulting in excess of positive curvature of the loss, explaining and refining its conventionally accepted connection to the initialization norm. Further, we relate the excess of positive curvature to model confidence, low initial loss, and a previously unknown type of vanishing cross-entropy loss gradient. To understand the importance of excessive positive curvature for trainability of deep networks, we optimize fully-connected and convolutional architectures outside the Goldilocks zone and analyze the emergent behaviors. We find that strong model performance is not perfectly aligned with the Goldilocks zone, calling for further research into this relationship.
- Abstract(参考訳): トレーニング損失の2次特性は、ディープラーニングモデルの最適化力学に大きな影響を与える。
Fort & Scherlis (2019) は、損失 Hessian の多数の正の曲率と局所凸性は、"Goldilocks zone" と呼ばれる領域にある高度に訓練可能な初期点と関連していることを示した。
その後もこの関係に触発された研究はごくわずかであり、ほとんど説明がつかないままである。
本稿では,同種ニューラルネットワークにおけるGoldilocksゾーンの厳密かつ包括的解析について述べる。
特に、損失の正の曲率を超越した基本条件を導出し、従来受け入れられていた初期化ノルムへの接続を説明する。
さらに, 正曲率の過大さをモデル信頼度, 初期損失の低さ, 以前は知られていなかったクロスエントロピー損失勾配に関連付ける。
深層ネットワークのトレーニング性に対する過剰な正曲率の重要性を理解するため,Goldilocksゾーン外の完全連結・畳み込みアーキテクチャを最適化し,創発的挙動を解析した。
私たちは、強力なモデルパフォーマンスがGoldilocksゾーンと完全に一致していないことに気付き、この関係についてさらなる研究を要求します。
関連論文リスト
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法において高い期待を得た
以前の研究では、PINNの伝播不良現象が観察された。
本論文は,伝播不良とその根本原因について,初めて公式かつ詳細な研究を行ったものである。
論文 参考訳(メタデータ) (2025-02-02T13:56:38Z) - Can Stability be Detrimental? Better Generalization through Gradient Descent Instabilities [14.741581246137404]
本研究では,大きな学習率によって引き起こされる不安定さが,損失景観の平坦な領域へモデルパラメータを移動させることを示す。
最新のベンチマークデータセットでは,これらが優れた一般化性能をもたらすことが判明した。
論文 参考訳(メタデータ) (2024-12-23T14:32:53Z) - The Persistence of Neural Collapse Despite Low-Rank Bias: An Analytic Perspective Through Unconstrained Features [0.0]
ディープニューラルネットワークは最終層の特徴と重みにおいて単純な構造を示し、一般に神経崩壊と呼ばれる。
最近の知見は、そのような構造は、深い制約のない特徴モデルでは一般的に最適ではないことを示している。
これは正則化によって引き起こされる低ランクバイアスによるもので、これは一般的に深い神経崩壊に関連するものよりも低いランクの解を好む。
論文 参考訳(メタデータ) (2024-10-30T16:20:39Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - How many Neurons do we need? A refined Analysis for Shallow Networks
trained with Gradient Descent [0.0]
ニューラル・タンジェント・カーネル・システムにおける2層ニューラルネットワークの一般化特性を解析した。
非パラメトリック回帰の枠組みにおいて、最小限最適であることが知られている収束の速い速度を導出する。
論文 参考訳(メタデータ) (2023-09-14T22:10:28Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Phenomenology of Double Descent in Finite-Width Neural Networks [29.119232922018732]
二重降下(double descend)は、モデルが属する体制に依存して行動を記述する。
我々は影響関数を用いて、人口減少とその下限の適切な表現を導出する。
本分析に基づき,損失関数が二重降下に与える影響について検討した。
論文 参考訳(メタデータ) (2022-03-14T17:39:49Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
平均場ランゲヴィン力学の収束速度解析について述べる。
ダイナミックスに付随する$p_q$により、凸最適化において古典的な結果と平行な収束理論を開発できる。
論文 参考訳(メタデータ) (2022-01-25T17:13:56Z) - An Unconstrained Layer-Peeled Perspective on Neural Collapse [20.75423143311858]
非拘束層列モデル (ULPM) と呼ばれるサロゲートモデルを導入する。
このモデル上の勾配流は、その大域的最小化器における神経崩壊を示す最小ノルム分離問題の臨界点に収束することを示す。
また,本研究の結果は,実世界のタスクにおけるニューラルネットワークのトレーニングにおいて,明示的な正規化や重み劣化が使用されない場合にも有効であることを示す。
論文 参考訳(メタデータ) (2021-10-06T14:18:47Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - On the Convex Behavior of Deep Neural Networks in Relation to the
Layers' Width [99.24399270311069]
より広いネットワークにおいて、降下最適化による損失を最小限に抑え、トレーニングの開始時と終了時に正の曲率の表面を貫き、その間の曲率をほぼゼロにすることを観察する。
言い換えれば、トレーニングプロセスの重要な部分において、広いネットワークにおけるヘッセンはG成分によって支配されているようである。
論文 参考訳(メタデータ) (2020-01-14T16:30:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。