論文の概要: Stein Boltzmann Sampling: A Variational Approach for Global Optimization
- arxiv url: http://arxiv.org/abs/2402.04689v1
- Date: Wed, 7 Feb 2024 09:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 16:04:23.906711
- Title: Stein Boltzmann Sampling: A Variational Approach for Global Optimization
- Title(参考訳): stein boltzmann sampling:グローバル最適化のための変分的アプローチ
- Authors: Ga\"etan Serr\'e (CB), Argyris Kalogeratos (CB), Nicolas Vayatis (CB)
- Abstract要約: 我々は,Stein Boltzmann Sampling (SBS) と呼ばれるリプシッツ関数の大域的最適化のための新しいフローベース手法を提案する。
本手法は,最適化対象関数の最小値集合上で一様となるボルツマン分布からサンプリングする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a new flow-based method for global optimization
of Lipschitz functions, called Stein Boltzmann Sampling (SBS). Our method
samples from the Boltzmann distribution that becomes asymptotically uniform
over the set of the minimizers of the function to be optimized. Candidate
solutions are sampled via the \emph{Stein Variational Gradient Descent}
algorithm. We prove the asymptotic convergence of our method, introduce two SBS
variants, and provide a detailed comparison with several state-of-the-art
global optimization algorithms on various benchmark functions. The design of
our method, the theoretical results, and our experiments, suggest that SBS is
particularly well-suited to be used as a continuation of efficient global
optimization methods as it can produce better solutions while making a good use
of the budget.
- Abstract(参考訳): 本稿では, stein boltzmann sampling (sbs) と呼ばれる, リプシッツ関数のグローバル最適化のための新しいフローベース手法を提案する。
我々の手法は、最適化される関数の最小値の集合に対して漸近的に一様となるボルツマン分布からサンプリングする。
候補解は \emph{Stein Variational Gradient Descent} アルゴリズムでサンプリングされる。
提案手法の漸近収束性を証明し、2つのSBS変種を導入し、様々なベンチマーク関数に対する最先端のグローバル最適化アルゴリズムと比較した。
提案手法の設計, 理論結果, 実験の結果から, sbsは, 効率的なグローバル最適化手法の継続として, 予算をうまく活用しながら, より良いソリューションを創造できるため, 特に適していることが示唆された。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Annealed Stein Variational Gradient Descent for Improved Uncertainty Estimation in Full-Waveform Inversion [25.714206592953545]
変分推論 (VI) は、パラメトリックまたは非パラメトリックな提案分布の形で後部分布に近似的な解を与える。
本研究は、フルウェーブフォーム・インバージョンにおけるVIの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-17T06:15:26Z) - Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance [10.11126899274029]
我々はヘビーボール法(SHB)の更新規則に適した新しいポリアク型変種を提案し,検討する。
MomSPS$_max$ に対して、(仮定なしで)凸および滑らかな問題に対する解の近傍に SHB の保証を提供する。
その他の2つの変種である MomDecSPS と MomAdaSPS は、SHB の最初の適応的なステップサイズであり、事前の知識なしに正確な最小値への収束を保証する。
論文 参考訳(メタデータ) (2024-06-06T15:08:06Z) - Broadening Target Distributions for Accelerated Diffusion Models via a Novel Analysis Approach [49.97755400231656]
本研究では,新しいDDPMサンプリング器が,これまで考慮されていなかった3種類の分散クラスに対して高速化性能を実現することを示す。
この結果から, DDPM型加速サンプリング器におけるデータ次元$d$への依存性が改善された。
論文 参考訳(メタデータ) (2024-02-21T16:11:47Z) - Energy-Based Sliced Wasserstein Distance [47.18652387199418]
スライスされたワッサーシュタイン(SW)距離の鍵成分はスライス分布である。
本研究では,スライシング分布をパラメータフリーなエネルギーベース分布として設計する。
次に、新しいスライスされたワッセルシュタイン計量、エネルギーベースのスライスされたワッセルシュタイン距離(EBSW)を導出する。
論文 参考訳(メタデータ) (2023-04-26T14:28:45Z) - Optimal Scaling for Locally Balanced Proposals in Discrete Spaces [65.14092237705476]
離散空間におけるMetropolis-Hastings (M-H) アルゴリズムの効率は、対象分布に依存しない受容率によって特徴づけられることを示す。
最適受容率の知識は、連続空間におけるステップサイズ制御と直接的に類似して、離散空間における提案分布の近傍サイズを自動的に調整することを可能にする。
論文 参考訳(メタデータ) (2022-09-16T22:09:53Z) - Super-model ecosystem: A domain-adaptation perspective [101.76769818069072]
本稿では,ドメイン適応による新たなスーパーモデルパラダイムの理論的基礎を確立することを試みる。
スーパーモデルパラダイムは、計算とデータコストと二酸化炭素排出量を減らすのに役立つ。
論文 参考訳(メタデータ) (2022-08-30T09:09:43Z) - SIXO: Smoothing Inference with Twisted Objectives [8.049531918823758]
SIXOは平滑な分布を近似する対象を学習する手法である。
次に、これらの学習対象とSMCを用いて、モデル学習と提案学習の変動目標を定義する。
論文 参考訳(メタデータ) (2022-06-13T07:46:35Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
一般ベイズ推論問題に対する2つの新しい分散VBアルゴリズムを提案する。
提案アルゴリズムは、核融合センターで利用可能な全データに依存する集中型VBアルゴリズムとほぼ同等の性能を有する。
論文 参考訳(メタデータ) (2020-11-27T08:12:18Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。