論文の概要: Separation-based distance measures for causal graphs
- arxiv url: http://arxiv.org/abs/2402.04952v3
- Date: Thu, 31 Oct 2024 16:55:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:57:15.216991
- Title: Separation-based distance measures for causal graphs
- Title(参考訳): 因果グラフの分離に基づく距離測定
- Authors: Jonas Wahl, Jakob Runge,
- Abstract要約: 最先端因果探索法は単一の因果グラフを出力するのではなく、それらの等価クラス(MEC)を出力する。
本稿では,分離距離の差が評価に適さないような距離の付加的な測定法を提案する。
我々は,既存の比較指標の違いを明らかにする実験と,おもちゃの例を用いて理論的解析を補完する。
- 参考スコア(独自算出の注目度): 15.37737222790121
- License:
- Abstract: Assessing the accuracy of the output of causal discovery algorithms is crucial in developing and comparing novel methods. Common evaluation metrics such as the structural Hamming distance are useful for assessing individual links of causal graphs. However, many state-of-the-art causal discovery methods do not output single causal graphs, but rather their Markov equivalence classes (MECs) which encode all of the graph's separation and connection statements. In this work, we propose additional measures of distance that capture the difference in separations of two causal graphs which link-based distances are not fit to assess. The proposed distances have low polynomial time complexity and are applicable to directed acyclic graphs (DAGs) as well as to maximal ancestral graph (MAGs) that may contain bidirected edges. We complement our theoretical analysis with toy examples and empirical experiments that highlight the differences to existing comparison metrics.
- Abstract(参考訳): 因果探索アルゴリズムの出力の精度を評価することは,新しい手法の開発と比較において重要である。
構造ハミング距離などの一般的な評価指標は、因果グラフの個々のリンクを評価するのに有用である。
しかし、最先端の因果探索法の多くは、単一の因果グラフを出力するのではなく、グラフの分離と接続ステートメントをすべてエンコードするマルコフ同値クラス(MEC)を出力している。
本研究では,リンクベース距離が評価に適さない2つの因果グラフの分離の差を捉えるために,追加的な距離測定法を提案する。
提案した距離は多項式時間の複雑さが低く、有向非巡回グラフ(DAG)や二方向エッジを含む最大祖先グラフ(MAG)にも適用可能である。
我々は,既存の比較指標の違いを強調する実験実験と,おもちゃの例を用いて理論的解析を補完する。
関連論文リスト
- Adjustment Identification Distance: A gadjid for Causal Structure Learning [2.72836834536003]
グラフ間の因果距離を開発するための枠組みを開発する。
このフレームワークを用いて、改良された調整ベース距離と、部分的に有向な非巡回グラフと因果順序の拡張を開発する。
論文 参考訳(メタデータ) (2024-02-13T17:32:59Z) - A continuous Structural Intervention Distance to compare Causal Graphs [5.477914707166288]
距離は、各ノードの組込み介入分布に基づいている。
合成データに対する数値実験で検証した理論的結果を示す。
論文 参考訳(メタデータ) (2023-07-31T07:20:26Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
本稿では,グラフ上の分布と信号の間の新しい距離を提案する。
GFMMDは、グラフ上で滑らかであり、期待差を最大化する最適な目撃関数によって定義される。
グラフベンチマークのデータセットと単一セルRNAシークエンシングデータ解析について紹介する。
論文 参考訳(メタデータ) (2023-06-05T00:01:17Z) - Ranking from Pairwise Comparisons in General Graphs and Graphs with
Locality [3.1219977244201056]
本稿では,古典的Bradley-Terry-Luceモデル(BTL)のペア比較によるランキング問題について検討する。
十分に多くのサンプルを用いて,Cram'er-Rao の下界と一致するエントリワイズ推定誤差が得られることを示す。
我々は、最も広いサンプルを持つ体制においても、同様の保証を確実に達成できる分割対コンカマーのアルゴリズムについて検討する。
論文 参考訳(メタデータ) (2023-04-13T21:14:30Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
グラフに基づく相対的制約のない最小二乗重要度フィッティング(GRULSIF)
我々はこの考え方を、グラフベースの相対的非制約最小二乗重要度フィッティング(GRULSIF)と呼ばれる具体的な非パラメトリック手法で開発する。
我々は、ノード当たりの観測回数、グラフのサイズ、およびグラフ構造がタスク間の類似性をどの程度正確にエンコードしているかといった変数が果たす役割を強調する、協調的なアプローチの収束率を導出する。
論文 参考訳(メタデータ) (2022-05-28T15:37:03Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiffは、構造化データのインスタンス間の距離を推定するためのカーネルベースの新しい尺度である。
これはインスタンス間の自己類似性と交差類似性の両方を考慮し、距離分布の低い定量値を用いて定義される。
kdiffをクラスタリングと分類問題のための距離尺度として用いた分離性条件について,いくつかの理論的結果が得られた。
論文 参考訳(メタデータ) (2021-09-29T22:54:17Z) - FGOT: Graph Distances based on Filters and Optimal Transport [62.779521543654134]
グラフ比較は、グラフ間の類似点と相違点の識別を扱う。
大きな障害は、グラフの未知のアライメントと、正確で安価な比較指標の欠如である。
本研究では,フィルタグラフ距離近似を導入する。
論文 参考訳(メタデータ) (2021-09-09T17:43:07Z) - Graph topology inference benchmarks for machine learning [16.857405938139525]
本稿では,グラフ推論手法の相対的メリットと限界を明らかにするために,いくつかのベンチマークを導入する。
我々はまた、文学において最も顕著な技法のいくつかを対比している。
論文 参考訳(メタデータ) (2020-07-16T09:40:32Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z) - Just SLaQ When You Approximate: Accurate Spectral Distances for
Web-Scale Graphs [6.72542623686684]
本研究では,数十億のノードとエッジを持つグラフ間のスペクトル距離を計算するための,効率的かつ効率的な近似手法であるSLaQを提案する。
SLaQは既存の手法よりも優れており、近似精度は数桁向上することが多い。
論文 参考訳(メタデータ) (2020-03-03T01:25:07Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。