論文の概要: Multiscale Modelling with Physics-informed Neural Network: from
Large-scale Dynamics to Small-scale Predictions in Complex Systems
- arxiv url: http://arxiv.org/abs/2402.05067v2
- Date: Thu, 8 Feb 2024 07:37:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 11:16:40.066300
- Title: Multiscale Modelling with Physics-informed Neural Network: from
Large-scale Dynamics to Small-scale Predictions in Complex Systems
- Title(参考訳): 物理インフォームドニューラルネットワークを用いたマルチスケールモデリング:大規模ダイナミクスから複雑系の小規模予測へ
- Authors: Jing Wang and Zheng Li and Pengyu Lai and Rui Wang and Di Yang and
Dewu Yang and Hui Xu
- Abstract要約: マルチスケール現象は様々な科学領域にまたがって現れ、複雑なシステムのマルチスケール力学を正確に、効果的に予測する上で、ユビキタスな課題を提示している。
本稿では,大規模力学を独立にモデル化し,小規模力学をスレーブシステムとして扱うことにより,デカップリング解法を新たに提案する。
スペクトル物理学インフォームドニューラルネットワーク(PINN)は,小型システムを効率的かつ高精度に特徴付けるために開発された。
- 参考スコア(独自算出の注目度): 16.264828930821903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiscale phenomena manifest across various scientific domains, presenting a
ubiquitous challenge in accurately and effectively predicting multiscale
dynamics in complex systems. In this paper, a novel decoupling solving mode is
proposed through modelling large-scale dynamics independently and treating
small-scale dynamics as a slaved system. A Spectral Physics-informed Neural
Network (PINN) is developed to characterize the small-scale system in an
efficient and accurate way. The effectiveness of the method is demonstrated
through extensive numerical experiments, including one-dimensional
Kuramot-Sivashinsky equation, two- and three-dimensional Navier-Stokes
equations, showcasing its versatility in addressing problems of fluid dynamics.
Furthermore, we also delve into the application of the proposed approach to
more complex problems, including non-uniform meshes, complex geometries,
large-scale data with noise, and high-dimensional small-scale dynamics. The
discussions about these scenarios contribute to a comprehensive understanding
of the method's capabilities and limitations. This paper presents a valuable
and promising approach to enhance the computational simulations of multiscale
spatiotemporal systems, which enables the acquisition of large-scale data with
minimal computational demands, followed by Spectral PINN to capture small-scale
dynamics with improved efficiency and accuracy.
- Abstract(参考訳): 多スケール現象は様々な科学領域にまたがって現れ、複雑系における多スケールダイナミクスを正確にかつ効果的に予測するためのユビキタスな課題を提示する。
本稿では,大規模ダイナミクスを独立にモデル化し,小規模ダイナミクスをスレーブシステムとして扱うことにより,新しいデカップリング解法を提案する。
小型システムを効率的かつ高精度に特徴付けるために,スペクトル物理インフォームドニューラルネットワーク(pinn)を開発した。
この手法の有効性は, 1次元のクラモット・シヴァシンスキー方程式, 2次元と3次元のナビエ・ストークス方程式など, 流体力学の問題に対する汎用性を示す広範な数値実験によって実証された。
さらに,非一様メッシュ,複雑なジオメトリ,ノイズを伴う大規模データ,高次元の小型ダイナミックスなど,より複雑な問題への提案手法の適用についても検討する。
これらのシナリオに関する議論は、メソッドの能力と制限の包括的理解に寄与する。
本稿では,大規模データを最小限の計算要求で取得し,続いてSpectral PINNによって効率と精度を向上した小型ダイナミックスを捕捉する,マルチスケール時空間システムの計算シミュレーションを強化する,価値があり有望なアプローチを提案する。
関連論文リスト
- Simultaneous Dimensionality Reduction for Extracting Useful Representations of Large Empirical Multimodal Datasets [0.0]
我々は,高次元データから低次元記述を得る手段として,次元減少の科学に焦点をあてる。
我々は,システム内の複雑な相互作用や高次元力学系など,従来の仮定に反する実世界のデータによって引き起こされる課題に対処する。
論文 参考訳(メタデータ) (2024-10-23T21:27:40Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
構造ボソニック環境と結合した2レベル系の動的疎結合を解析的に検討した。
このようなシステムに対して動的疎結合が機能する十分な条件を見つける。
私たちの境界は、様々な関連するシステムパラメータで正しいスケーリングを再現します。
論文 参考訳(メタデータ) (2024-09-24T04:58:28Z) - Efficient PAC Learnability of Dynamical Systems Over Multilayer Networks [30.424671907681688]
より現実的で困難な多層ネットワーク上での動的システムの学習可能性について検討する。
本研究では,学習者が未知のシステムを推論するために,少数の学習例のみを必要とすることを示すための証明可能な保証付き効率的なPAC学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-11T02:35:08Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
本研究は,様々な力学系における盆地の複雑さと予測不可能性を特徴づけることの課題に対処する。
主な焦点は、この分野における畳み込みニューラルネットワーク(CNN)の効率性を示すことである。
論文 参考訳(メタデータ) (2023-09-27T15:41:12Z) - Interpretable learning of effective dynamics for multiscale systems [5.754251195342313]
iLED(Interpretable Learning Effective Dynamics)の新たな枠組みを提案する。
iLEDは、最先端のリカレントニューラルネットワークベースのアプローチに匹敵する精度を提供する。
その結果、iLEDフレームワークは正確な予測を生成でき、解釈可能なダイナミクスを得ることができることがわかった。
論文 参考訳(メタデータ) (2023-09-11T20:29:38Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Exploring Disordered Quantum Spin Models with a Multi-Layer
Multi-Configurational Approach [0.0]
我々は、複数の乱れたスピンモデルの基底状態を評価するために、多層マルチコンフィグレーション時間依存Hartree (ML-MCTDH) と呼ばれる数値手法を用いる。
1次元と2次元の空間次元で結果を示すために,本手法の固有の柔軟性を活用し,長期的相互作用と障害を含む挑戦的なセットアップを扱う。
論文 参考訳(メタデータ) (2022-12-05T13:26:41Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。