論文の概要: Enhancing textual textbook question answering with large language models and retrieval augmented generation
- arxiv url: http://arxiv.org/abs/2402.05128v3
- Date: Wed, 22 Jan 2025 07:14:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:45.743041
- Title: Enhancing textual textbook question answering with large language models and retrieval augmented generation
- Title(参考訳): 大規模言語モデルによるテキスト教科書質問応答の強化と検索拡張生成
- Authors: Hessa Abdulrahman Alawwad, Areej Alhothali, Usman Naseem, Ali Alkhathlan, Amani Jamal,
- Abstract要約: 本稿では、検索拡張生成(RAG)技術を組み込んだフレームワーク(PLRTQA)を提案する。
我々のアーキテクチャはベースラインよりも優れており、検証セットが4.12%、テストセットが9.84%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 3.6799953119508735
- License:
- Abstract: Textbook question answering (TQA) is a challenging task in artificial intelligence due to the complex nature of context needed to answer complex questions. Although previous research has improved the task, there are still some limitations in textual TQA, including weak reasoning and inability to capture contextual information in the lengthy context. We propose a framework (PLRTQA) that incorporates the retrieval augmented generation (RAG) technique to handle the out-of-domain scenario where concepts are spread across different lessons, and utilize transfer learning to handle the long context and enhance reasoning abilities. Our architecture outperforms the baseline, achieving an accuracy improvement of 4. 12% in the validation set and 9. 84% in the test set for textual multiple-choice questions. While this paper focuses on solving challenges in the textual TQA, It provides a foundation for future work in multimodal TQA where the visual components are integrated to address more complex educational scenarios. Code: https://github.com/hessaAlawwad/PLR-TQA
- Abstract(参考訳): テキスト質問応答(TQA)は、複雑な質問に答えるために必要なコンテキストの複雑な性質のため、人工知能において難しい課題である。
これまでの研究では、タスクの改善はあったが、弱い推論やコンテキスト情報を長大な文脈でキャプチャできないなど、テキストによるTQAにはまだいくつかの制限がある。
本稿では,概念が様々な授業にまたがる領域外シナリオを扱うために,検索拡張生成(RAG)技術を取り入れたフレームワーク(PLRTQA)を提案する。
アーキテクチャはベースラインを上回り,精度4。
12%と9。
84%であった。
本稿では、テキストTQAにおける課題の解決に焦点をあてる一方で、より複雑な教育シナリオに対応するために視覚コンポーネントを統合するマルチモーダルTQAにおける今後の取り組みの基礎を提供する。
コード:https://github.com/hessaAlawwad/PLR-TQA
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - RAVEN: Multitask Retrieval Augmented Vision-Language Learning [5.1583788731239455]
世界中の知識をエンコードする大規模言語モデルのスケーリングは持続不可能であり、リソースバリアが悪化している。
Retrieval-Augmented Generation (RAG) は潜在的な解決策を示すが、その視覚言語モデル(VLM)への応用は検討中である。
本稿では,効率的なタスク特化微調整により,ベースVLMを強化した検索拡張VLMフレームワークであるRAVENを紹介する。
論文 参考訳(メタデータ) (2024-06-27T13:08:35Z) - Automated Evaluation of Retrieval-Augmented Language Models with Task-Specific Exam Generation [9.390902237835457]
検索型大規模言語モデル(RAG)のタスク固有精度を計測する新しい手法を提案する。
複数の選択質問からなる自動生成合成試験において、RAGをスコアリングして評価を行う。
論文 参考訳(メタデータ) (2024-05-22T13:14:11Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
弱い教師付きベンチマークであるtextscPuzzleBen について,25,147 の複雑な質問,回答,人為的合理性からなる。
データセットのユニークな側面は、10,000の未注釈の質問を含めることであり、LLMの推論能力を高めるために、より少ないスーパーサイズのデータを活用することができる。
論文 参考訳(メタデータ) (2024-05-07T07:39:15Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Analysis of the Reasoning with Redundant Information Provided Ability of
Large Language Models [0.0]
大きな言語モデル(LLM)は、さまざまな自然言語処理タスクにまたがる印象的な機能を示している。
このギャップに対処するため,Reasoning with Redundant Information Provided (RRIP) と呼ばれる新しいQAタスクが導入された。
本研究は,LlaMA2-13B-chatとGPT-3.5 (generative pre-trained transformer 3.5)の2つのLLMを評価し,従来のQAタスクとRRIPタスクとの対比を行った。
論文 参考訳(メタデータ) (2023-10-06T06:20:06Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
そこで本研究では,Dual Queries と Low-rank approximation Re- rank を利用して,文脈内学習のための例を自動選択するフレームワークを提案する。
DQ-LoRe は GPT-4 の自動選択において最先端の手法よりも優れ、92.5% から94.2% まで性能が向上した。
論文 参考訳(メタデータ) (2023-10-04T16:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。