論文の概要: Probabilistic Forecasting of Irregular Time Series via Conditional Flows
- arxiv url: http://arxiv.org/abs/2402.06293v2
- Date: Tue, 21 May 2024 16:37:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 18:31:52.042353
- Title: Probabilistic Forecasting of Irregular Time Series via Conditional Flows
- Title(参考訳): 条件流による不規則時系列の確率予測
- Authors: Vijaya Krishna Yalavarthi, Randolf Scholz, Stefan Born, Lars Schmidt-Thieme,
- Abstract要約: 本稿では,不規則サンプル時系列の確率予測のための新しいモデルProFITiを提案する。
このモデルは過去の観測や待ち行列や時間に基づく時系列の今後の値に関する共同分布を学習する。
4つのデータセットに対して広範な実験を行い、提案モデルが以前最高のモデルよりも4ドル高い確率を提供することを示した。
- 参考スコア(独自算出の注目度): 4.995289882402786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic forecasting of irregularly sampled multivariate time series with missing values is an important problem in many fields, including health care, astronomy, and climate. State-of-the-art methods for the task estimate only marginal distributions of observations in single channels and at single timepoints, assuming a fixed-shape parametric distribution. In this work, we propose a novel model, ProFITi, for probabilistic forecasting of irregularly sampled time series with missing values using conditional normalizing flows. The model learns joint distributions over the future values of the time series conditioned on past observations and queried channels and times, without assuming any fixed shape of the underlying distribution. As model components, we introduce a novel invertible triangular attention layer and an invertible non-linear activation function on and onto the whole real line. We conduct extensive experiments on four datasets and demonstrate that the proposed model provides $4$ times higher likelihood over the previously best model.
- Abstract(参考訳): 不規則なサンプル値の多変量時系列の確率的予測は、医療、天文学、気候など多くの分野において重要な問題である。
タスクの最先端手法は、固定形状のパラメトリック分布を仮定して、単一チャネルと単一タイムポイントにおける観測の限界分布のみを推定する。
本研究では,条件付き正規化フローを用いた不規則サンプル時系列の確率予測のための新しいモデルProFITiを提案する。
このモデルは、過去の観測や待ち行列や時間に条件づけられた時系列の将来の値に関する共同分布を、基礎となる分布の固定形状を仮定することなく学習する。
モデル成分として,新しい非可逆三角アテンション層と,非可逆な非線形アクティベーション関数を実線上に導入する。
4つのデータセットに対して広範な実験を行い、提案モデルが以前最高のモデルよりも4ドル高い確率を提供することを示した。
関連論文リスト
- Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting [4.714246221974192]
我々は,新しい確率的不規則時系列予測モデル,Marginalization Consistent Mixtures of Separable Flows (moses)を開発した。
mosesは、他の最先端のマーカライゼーション一貫性モデルより優れ、ProFITiと同等だが、ProFITiと異なり、マーカライゼーション一貫性を保証する。
論文 参考訳(メタデータ) (2024-06-11T13:28:43Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - DynaConF: Dynamic Forecasting of Non-Stationary Time Series [4.286546152336783]
非定常条件分布を時間とともにモデル化する新しい手法を提案する。
我々のモデルは、最先端のディープラーニングソリューションよりも定常的でない時系列に適応できることを示します。
論文 参考訳(メタデータ) (2022-09-17T21:40:02Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Autoregressive Denoising Diffusion Models for Multivariate Probabilistic
Time Series Forecasting [4.1573460459258245]
拡散確率モデル(拡散確率モデル)は、スコアマッチングやエネルギーベースの手法と密接に結びついている潜在変数モデルのクラスである。
我々のモデルは、データ可能性の変動境界を最適化して勾配を学習し、推論時にホワイトノイズを関心の分布のサンプルに変換する。
論文 参考訳(メタデータ) (2021-01-28T15:46:10Z) - Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate
Time Series Forecasting [4.131842516813833]
時間系列の非線形ファクタリゼーションを可能にする新しい時間的潜時オートエンコーダ法を提案する。
確率的潜時空間モデルにより、入力系列の複雑な分布はデコーダを介してモデル化される。
我々のモデルは、多くの一般的な多変量データセット上で最先端のパフォーマンスを達成し、いくつかの標準メトリクスに対して最大50%のゲインを得られることがある。
論文 参考訳(メタデータ) (2021-01-25T22:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。