論文の概要: Best Practices for Facing the Security Challenges of Internet of Things
Devices Focusing on Software Development Life Cycle
- arxiv url: http://arxiv.org/abs/2402.07832v1
- Date: Mon, 12 Feb 2024 17:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 13:33:50.006101
- Title: Best Practices for Facing the Security Challenges of Internet of Things
Devices Focusing on Software Development Life Cycle
- Title(参考訳): ソフトウェア開発ライフサイクルに焦点をあてたモノのインターネットのセキュリティ問題に直面するベストプラクティス
- Authors: Md Rafid Islam, Ratun Rahman
- Abstract要約: IoTデバイスのセキュリティは、脅威の増加による最優先事項となっている。
この研究の目的は、潜在的な脅威に対する認識を高め、セキュアなソフトウェア開発ライフサイクルを強調することである。
この研究は、将来の発展の基準としても役立つだろう。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the past few years, the number of IoT devices has grown substantially, and
this trend is likely to continue. An increasing amount of effort is being put
into developing software for the ever-increasing IoT devices. Every IoT system
at its core has software that enables the devices to function efficiently. But
security has always been a concern in this age of information and technology.
Security for IoT devices is now a top priority due to the growing number of
threats. This study introduces best practices for ensuring security in the IoT,
with an emphasis on guidelines to be utilized in software development for IoT
devices. The objective of the study is to raise awareness of potential threats,
emphasizing the secure software development lifecycle. The study will also
serve as a point of reference for future developments and provide a solid
foundation for securing IoT software and dealing with vulnerabilities.
- Abstract(参考訳): ここ数年、IoTデバイスの数は大幅に増加しており、この傾向は続く可能性が高い。
ますます増加するIoTデバイスのためのソフトウェアの開発に、ますます多くの努力が注がれている。
すべてのiotシステムは、デバイスが効率的に機能するソフトウェアを持っています。
しかし、この情報とテクノロジーの時代には常にセキュリティが懸念されている。
IoTデバイスのセキュリティは、脅威の増加による最優先事項となっている。
本研究は、IoTデバイスのソフトウェア開発に使用されるガイドラインに重点を置いて、IoTにおけるセキュリティを確保するためのベストプラクティスを紹介する。
この研究の目的は、潜在的な脅威に対する認識を高め、セキュアなソフトウェア開発ライフサイクルを強調することである。
この研究はまた、将来の開発への参考点となり、iotソフトウェアをセキュアにし、脆弱性に対処するための確固たる基盤を提供する。
関連論文リスト
- IoT in the Cloud: Exploring Security Challenges and Mitigations for a Connected World [18.36339203254509]
IoT(Internet of Things)は近年顕著な進歩を遂げており、デジタルランドスケープのパラダイムシフトにつながっている。
IoTデバイスは本質的にインターネットに接続されており、様々なタイプの攻撃を受けやすい。
IoTサービスは、悪意のあるアクターや不正なサービスプロバイダによって悪用される可能性のある、機密性の高いユーザデータを扱うことが多い。
論文 参考訳(メタデータ) (2024-02-01T05:55:43Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - A Survey of the Security Challenges and Requirements for IoT Operating Systems [0.0]
IoT(Internet of Things)は、ユビキタスなコネクティビティに囲まれた世界へと収束するにつれて、現代生活の不可欠な部分になりつつある。
巨大なIoTエコシステムによって引き起こされる固有の複雑さは、個々のシステムコンポーネントとそのインタラクションの理解が不十分に終わる。
安定かつセキュアなソリューションの開発を規制する基盤として機能する統一オペレーティングシステム(OS)が必要である。
論文 参考訳(メタデータ) (2023-10-27T19:19:07Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-27T02:58:11Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
論文 参考訳(メタデータ) (2023-09-06T04:41:48Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
IoT(Internet of Things)の統合は、多数のインテリジェントデバイスを人間による最小限の干渉で接続する。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
ディープラーニング(DL)/機械学習(ML)メソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
論文 参考訳(メタデータ) (2022-10-24T19:02:27Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
IoT(Internet of Things)は、デプロイされるデバイスやアプリケーションの数の増加とともに、ネットワークのメンテナンス手順に大きな課題をもたらしている。
部分観測可能なマルコフ決定プロセスとして,IoTネットワークにおける自律的メンテナンスの問題を定式化する。
深層強化学習アルゴリズム (drl) を用いて, 保守手順が整っているか否かを判断するエージェントを訓練し, 前者の場合, 適切なメンテナンス方法が必要となる。
論文 参考訳(メタデータ) (2020-12-31T11:19:51Z) - Smart Home, security concerns of IoT [91.3755431537592]
IoT(モノのインターネット)は、国内環境において広く普及している。
人々は自宅をスマートホームにリニューアルしているが、インターネットに接続された多くのデバイスを常時オンの環境センサーで所有するというプライバシー上の懸念はいまだに不十分だ。
デフォルトパスワードと弱いパスワード、安価な材料とハードウェア、暗号化されていない通信は、IoTデバイスの主要な脅威と脆弱性として識別される。
論文 参考訳(メタデータ) (2020-07-06T10:36:11Z) - Machine Learning Based Solutions for Security of Internet of Things
(IoT): A Survey [8.108571247838206]
IoTプラットフォームは、到達不可能なスマートサービスで人間の生活を前進させることによって、私たちの日常生活のあらゆる側面をつかむ、グローバルな巨人へと発展してきた。
IoTを保護するために適用可能なセキュリティ対策は,すでに存在する。
伝統的なテクニックは、様々な攻撃タイプやその重大さと同様に、進歩ブームほど効率的ではない。
機械学習(ML)では、IoTの現在および将来の課題に対処する多くの研究ウィンドウがオープンされている。
論文 参考訳(メタデータ) (2020-04-11T03:08:24Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。