論文の概要: Group Decision-Making among Privacy-Aware Agents
- arxiv url: http://arxiv.org/abs/2402.08156v2
- Date: Thu, 15 Feb 2024 21:50:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 19:10:20.741516
- Title: Group Decision-Making among Privacy-Aware Agents
- Title(参考訳): プライバシアウェアエージェントの集団意思決定
- Authors: Marios Papachristou, M. Amin Rahimian
- Abstract要約: 個人のプライバシーを維持し、効果的な社会学習を可能にすることはどちらも重要なデシダータであるが、基本的には互いに相反しているように見える。
差分プライバシー(DP)に基づく厳密な統計的保証を用いて情報漏洩を制御する。
その結果,グループ意思決定の結果の質,学習精度,通信コスト,エージェントが備えているプライバシー保護の水準の両面でのトレードオフの性質が明らかになった。
- 参考スコア(独自算出の注目度): 2.88268082568407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How can individuals exchange information to learn from each other despite
their privacy needs and security concerns? For example, consider individuals
deliberating a contentious topic and being concerned about divulging their
private experiences. Preserving individual privacy and enabling efficient
social learning are both important desiderata but seem fundamentally at odds
with each other and very hard to reconcile. We do so by controlling information
leakage using rigorous statistical guarantees that are based on differential
privacy (DP). Our agents use log-linear rules to update their beliefs after
communicating with their neighbors. Adding DP randomization noise to beliefs
provides communicating agents with plausible deniability with regard to their
private information and their network neighborhoods. We consider two learning
environments one for distributed maximum-likelihood estimation given a finite
number of private signals and another for online learning from an infinite,
intermittent signal stream. Noisy information aggregation in the finite case
leads to interesting tradeoffs between rejecting low-quality states and making
sure all high-quality states are accepted in the algorithm output. Our results
flesh out the nature of the trade-offs in both cases between the quality of the
group decision outcomes, learning accuracy, communication cost, and the level
of privacy protections that the agents are afforded.
- Abstract(参考訳): プライバシーやセキュリティの懸念にもかかわらず、個人はどのように情報を交換して相互に学び合うのか?
例えば、議論の多いトピックを熟考し、個人的な経験を開示することに関心を持つ個人を考える。
個人のプライバシーを維持し、効果的な社会的学習を可能にすることはどちらも重要なデシダータであるが、基本的には互いに相反し、和解が困難である。
我々は、差分プライバシー(dp)に基づく厳密な統計保証を用いて情報漏洩を制御する。
我々のエージェントは、隣人と通信した後、彼らの信念を更新するためにログリニアルールを使用します。
信条にDPランダム化ノイズを加えることで、コミュニケーションエージェントは、彼らのプライベート情報とそのネットワーク近隣について、もっともらしい識別性が得られる。
2つの学習環境を,有限個のプライベート信号が与えられた分散最大様相推定用と,無限の断続的な信号ストリームからオンライン学習用と考えて検討した。
有限ケースにおけるノイズ情報集約は、低品質状態の拒絶と、アルゴリズム出力にすべての高品質状態が受け入れられることの間の興味深いトレードオフをもたらす。
その結果,グループ意思決定の結果の質,学習精度,通信コスト,エージェントが備えているプライバシー保護の水準の両面でのトレードオフの性質が明らかになった。
関連論文リスト
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
我々は、信頼された中央サーバを仮定することなく、各データセットに対するプライバシー保証を提供する、テキストフェデレーションによる差分プライバシーの概念を定式化する。
フェデレートされた差分プライバシは、確立されたローカルと中央の差分プライバシモデルの間の中間プライバシモデルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:04:48Z) - DPMAC: Differentially Private Communication for Cooperative Multi-Agent
Reinforcement Learning [21.961558461211165]
コミュニケーションは、人間社会とマルチエージェント強化学習(MARL)における協力の基礎となる。
本稿では,各エージェントに厳密な$(epsilon, delta)$-differential privacy guaranteeを付与したローカルメッセージ送信装置を装備することにより,個々のエージェントのセンシティブな情報を保護できる,テキスト・ディペンデンシャル・プライベート・マルチエージェント・コミュニケーション(DPMAC)アルゴリズムを提案する。
我々は、プライバシ保護通信と協調的なMARLにおけるナッシュ均衡の存在を証明し、この問題がゲーム理論的に学習可能であることを示唆する。
論文 参考訳(メタデータ) (2023-08-19T04:26:23Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Differentially Private Federated Combinatorial Bandits with Constraints [8.390356883529172]
本研究は, 品質制約を維持しつつ, 類似のバンディット問題を解決するために, 同時に作業するエージェント群について検討する。
我々のアルゴリズムは、品質のしきい値と有意義なプライバシー保証を保ちながら、後悔の観点から改善することを示している。
論文 参考訳(メタデータ) (2022-06-27T11:14:28Z) - "Am I Private and If So, how Many?" -- Using Risk Communication Formats
for Making Differential Privacy Understandable [0.0]
我々は、差別化プライバシのプライバシリスクモデルと合わせて、リスクコミュニケーションフォーマットを適応する。
我々はこれらの新しいプライバシーコミュニケーションフォーマットをクラウドソーシング研究で評価する。
論文 参考訳(メタデータ) (2022-04-08T13:30:07Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Privacy-Preserving Communication-Efficient Federated Multi-Armed Bandits [17.039484057126337]
通信ボトルネックとデータプライバシは、連邦化された多武装バンディット(MAB)問題において2つの重要な問題である。
このような問題に対して,プライバシ保存型通信効率アルゴリズムを設計し,後悔の観点から,プライバシ,コミュニケーション,学習性能の相互作用について検討する。
論文 参考訳(メタデータ) (2021-11-02T12:56:12Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。