論文の概要: LLaGA: Large Language and Graph Assistant
- arxiv url: http://arxiv.org/abs/2402.08170v2
- Date: Sat, 17 Feb 2024 17:59:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 01:08:27.153233
- Title: LLaGA: Large Language and Graph Assistant
- Title(参考訳): LLaGA: 大規模言語とグラフアシスタント
- Authors: Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, Zhangyang Wang
- Abstract要約: 大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
- 参考スコア(独自算出の注目度): 79.09010152231164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have empowered the advance in graph-structured
data analysis. Recently, the rise of Large Language Models (LLMs) like GPT-4
has heralded a new era in deep learning. However, their application to graph
data poses distinct challenges due to the inherent difficulty of translating
graph structures to language. To this end, we introduce the Large Language and
Graph Assistant (LLaGA), an innovative model that effectively integrates LLM
capabilities to handle the complexities of graph-structured data. LLaGA retains
the general-purpose nature of LLMs while adapting graph data into a format
compatible with LLM input. LLaGA achieves this by reorganizing graph nodes to
structure-aware sequences and then mapping these into the token embedding space
through a versatile projector. LLaGA excels in versatility, generalizability
and interpretability, allowing it to perform consistently well across different
datasets and tasks, extend its ability to unseen datasets or tasks, and provide
explanations for graphs. Our extensive experiments across popular graph
benchmarks show that LLaGA delivers outstanding performance across four
datasets and three tasks using one single model, surpassing state-of-the-art
graph models in both supervised and zero-shot scenarios. Our code is available
at \url{https://github.com/VITA-Group/LLaGA}.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データ分析の進歩を促進する。
近年、GPT-4のような大規模言語モデル(LLM)の台頭は、ディープラーニングの新しい時代を告げている。
しかし、グラフデータへの彼らの応用は、グラフ構造を言語に翻訳することが本質的に困難であるため、異なる課題をもたらす。
この目的のために,Large Language and Graph Assistant (LLaGA)を導入し,LLM機能を効果的に統合し,グラフ構造化データの複雑さを処理する。
LLaGA は LLM の汎用性を維持しながら、グラフデータを LLM 入力と互換性のあるフォーマットに適合させる。
LLaGAはグラフノードを構造認識シーケンスに再編成し、それを多目的プロジェクタを通じてトークン埋め込み空間にマッピングすることでこれを実現している。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して機能し、データセットやタスクを表示できないように拡張し、グラフの説明を提供する。
LLaGAは4つのデータセットと3つのタスクを1つのモデルで比較し、教師付きおよびゼロショットのシナリオで最先端のグラフモデルを上回っていることを示す。
私たちのコードは \url{https://github.com/VITA-Group/LLaGA} で利用可能です。
関連論文リスト
- NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
本稿では,逐次テキスト処理とグラフ構造化データのギャップを埋める新しいアプローチであるAskGNNを紹介する。
AskGNNはグラフニューラルネットワーク(GNN)を利用した構造強化レトリバーを使用して、グラフをまたいだラベル付きノードを選択する。
3つのタスクと7つのLLMにわたる実験は、グラフタスクのパフォーマンスにおいてAskGNNが優れていることを示す。
論文 参考訳(メタデータ) (2024-10-09T17:19:12Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて幻覚に悩まされる。
既存の研究は、外部知識コーパスから取得した個々のテキスト単位でLLMを拡張することを提案する。
本稿では,グラフを反復的に推論することで,LLMをグラフで拡張するためのGraph Chain-of-thinkt (Graph-CoT) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T15:41:53Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な性能を達成している。
LLMがグラフデータを効果的に処理し、トポロジ構造を利用して性能を向上させることができるかどうかを評価することを目的とする。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
論文 参考訳(メタデータ) (2023-10-07T23:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。