論文の概要: Artificial Intelligence for Literature Reviews: Opportunities and
Challenges
- arxiv url: http://arxiv.org/abs/2402.08565v1
- Date: Tue, 13 Feb 2024 16:05:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 14:39:36.125413
- Title: Artificial Intelligence for Literature Reviews: Opportunities and
Challenges
- Title(参考訳): 文献レビューのための人工知能: 機会と課題
- Authors: Francisco Bolanos, Angelo Salatino, Francesco Osborne, Enrico Motta
- Abstract要約: この写本は、システム文献レビューにおける人工知能の使用に関する包括的なレビューを提示する。
SLRは、あるトピックに関する以前の研究を評価し、統合する厳格で組織化された方法論である。
従来の23の機能と11のAI機能を組み合わせたフレームワークを用いて、主要なSLRツール21について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This manuscript presents a comprehensive review of the use of Artificial
Intelligence (AI) in Systematic Literature Reviews (SLRs). A SLR is a rigorous
and organised methodology that assesses and integrates previous research on a
given topic. Numerous tools have been developed to assist and partially
automate the SLR process. The increasing role of AI in this field shows great
potential in providing more effective support for researchers, moving towards
the semi-automatic creation of literature reviews. Our study focuses on how AI
techniques are applied in the semi-automation of SLRs, specifically in the
screening and extraction phases. We examine 21 leading SLR tools using a
framework that combines 23 traditional features with 11 AI features. We also
analyse 11 recent tools that leverage large language models for searching the
literature and assisting academic writing. Finally, the paper discusses current
trends in the field, outlines key research challenges, and suggests directions
for future research.
- Abstract(参考訳): 本書は、SLR(Systematic Literature Reviews)における人工知能(AI)の使用に関する包括的なレビューを提示する。
SLRは、あるトピックに関する以前の研究を評価し、統合する厳格で組織化された方法論である。
SLRプロセスを支援し、部分的に自動化するための多くのツールが開発されている。
この分野におけるAIの役割の増大は、研究者により効果的な支援を提供する大きな可能性を示しており、文献レビューの半自動作成に向かっている。
本研究は,SLRの半自動化におけるAI技術の適用方法,特にスクリーニングと抽出フェーズに焦点をあてる。
従来の23の機能と11のai機能を組み合わせたフレームワークを用いて,21のslrツールを調査した。
また、文献検索や学術的執筆支援に大規模な言語モデルを活用する11のツールを分析した。
最後に,この分野の現状と課題について概説するとともに,今後の研究の方向性について述べる。
関連論文リスト
- From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssistは学術研究における文献レビューの合理化を目的としたオープンソースツールである。
レビュープロセスの重要な側面を自動化するために、Large Language Models(LLM)とNatural Language Processing(NLP)技術を使用する。
論文 参考訳(メタデータ) (2024-07-19T02:48:54Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
本稿では,システム文献レビューの実施プロセスの完全自動化を目的とした,新しいマルチAIエージェントモデルを提案する。
このモデルは、研究者がトピックを入力するユーザフレンドリーなインターフェースを介して動作する。
関連する学術論文を検索するために使用される検索文字列を生成する。
モデルはこれらの論文の要約を自律的に要約する。
論文 参考訳(メタデータ) (2024-03-13T10:27:52Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - A Systematic Literature Review on Explainability for Machine/Deep
Learning-based Software Engineering Research [23.966640472958105]
本稿では,ソフトウェア工学の文脈におけるAIモデルの説明可能性の向上を目的とした,体系的な文献レビューを行う。
我々は,XAI技術がこれまで成功してきたSEタスク,(2)異なるXAI手法の分類と分析,(3)既存の評価手法を考察することを目的としている。
論文 参考訳(メタデータ) (2024-01-26T03:20:40Z) - Streamlining the Selection Phase of Systematic Literature Reviews (SLRs) Using AI-Enabled GPT-4 Assistant API [0.0]
本研究は,システム文献レビューにおいて,記事選択フェーズの効率を合理化するための,先駆的なAIベースのツールを紹介する。
このツールは、幅広い学術分野にわたる記事選択プロセスの均質化に成功している。
論文 参考訳(メタデータ) (2024-01-14T11:16:16Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
我々は過去15年間に提案されたAI技術について,研究者が科学的文献の体系的な分析を行うのを助けるために調査を行った。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
論文 参考訳(メタデータ) (2024-01-13T19:12:49Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。