Extracting randomness from quantum 'magic'
- URL: http://arxiv.org/abs/2402.10181v1
- Date: Thu, 15 Feb 2024 18:33:21 GMT
- Title: Extracting randomness from quantum 'magic'
- Authors: Christopher Vairogs, Bin Yan
- Abstract summary: We show that when a subsystem of a quantum state is measured, the resultant projected ensemble of the unmeasured subsystem can exhibit a high degree of randomness.
Our findings suggest an efficient approach for leveraging magic as a resource to generate random quantum states.
- Score: 4.607344782066309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magic is a critical property of quantum states that plays a pivotal role in
fault-tolerant quantum computation. Simultaneously, random states have emerged
as a key element in various randomized techniques within contemporary quantum
science. In this study, we establish a direct connection between these two
notions. More specifically, our research demonstrates that when a subsystem of
a quantum state is measured, the resultant projected ensemble of the unmeasured
subsystem can exhibit a high degree of randomness that is enhanced by the
inherent 'magic' of the underlying state. We demonstrate this relationship
rigorously for quantum state 2-designs, and present compelling numerical
evidence to support its validity for higher-order quantum designs. Our findings
suggest an efficient approach for leveraging magic as a resource to generate
random quantum states.
Related papers
- Quantum Non-Local Magic [3.134848671499466]
Quantum entanglement and quantum magic are fundamental resources that characterize distinct aspects of a quantum state.
We propose that quantum non-local magic serves as an effective measure of this combined resource, incorporating both entanglement and magic.
arXiv Detail & Related papers (2025-02-10T12:28:52Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum Ruzsa Divergence to Quantify Magic [0.0]
We investigate the behavior of quantum entropy under quantum convolution and its application in magic.
We introduce a new quantum divergence based on quantum convolution, called the quantum Ruzsa divergence, to study the stabilizer structure of quantum states.
arXiv Detail & Related papers (2024-01-25T18:43:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum entanglement recognition [0.0]
We formulate a framework for probing entanglement based on machine learning techniques.
We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error.
arXiv Detail & Related papers (2020-07-28T18:00:00Z) - Demonstration of quantum delayed-choice experiment on a quantum computer [1.4247965743943851]
We show that coexistence of wave and particle nature emerges as a consequence of the uncertainty in the quantum controlled experimental setup.
We also show that an entanglement-assisted scheme of the same reproduces the predictions of quantum mechanics.
arXiv Detail & Related papers (2020-04-09T16:11:25Z) - Quantum supremacy in driven quantum many-body systems [0.0]
We show that quantum supremacy can be obtained in generic periodically-driven quantum many-body systems.
Our proposal opens the way for a large class of quantum platforms to demonstrate and benchmark quantum supremacy.
arXiv Detail & Related papers (2020-02-27T07:20:15Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.