論文の概要: Signed Diverse Multiplex Networks: Clustering and Inference
- arxiv url: http://arxiv.org/abs/2402.10242v3
- Date: Thu, 10 Jul 2025 22:44:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.024517
- Title: Signed Diverse Multiplex Networks: Clustering and Inference
- Title(参考訳): 符号付き逆多重ネットワーク:クラスタリングと推論
- Authors: Marianna Pensky,
- Abstract要約: 本稿では,エッジを肯定的あるいは否定的に得るSGRDPG(Signed Generalized Random Dot Product Graph)モデルを提案する。
設定は多重バージョンに拡張され、すべてのレイヤが同じノードのコレクションを持ち、SGRDPGに従う。
本稿では,新しい手法を用いることで,階層の強い一貫したクラスタリングと高精度な部分空間推定を実現する。
- 参考スコア(独自算出の注目度): 4.070200285321219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper introduces a Signed Generalized Random Dot Product Graph (SGRDPG) model, which is a variant of the Generalized Random Dot Product Graph (GRDPG), where, in addition, edges can be positive or negative. The setting is extended to a multiplex version, where all layers have the same collection of nodes and follow the SGRDPG. The only common feature of the layers of the network is that they can be partitioned into groups with common subspace structures, while otherwise matrices of connection probabilities can be all different. The setting above is extremely flexible and includes a variety of existing multiplex network models, including GRDPG, as its particular cases. By employing novel methodologies, our paper ensures strongly consistent clustering of layers and highly accurate subspace estimation, which are significant improvements over the results of Pensky and Wang (2024). All algorithms and theoretical results in the paper remain true for both signed and binary networks. In addition, the paper shows that keeping signs of the edges in the process of network construction leads to a better precision of estimation and clustering and, hence, is beneficial for tackling real world problems such as, for example, analysis of brain networks.
- Abstract(参考訳): 本稿では, 一般ランダムドット製品グラフ (GRDPG) の変種である Signed Generalized Random Dot Product Graph (SGRDPG) モデルを紹介する。
設定は多重バージョンに拡張され、すべてのレイヤが同じノードのコレクションを持ち、SGRDPGに従う。
ネットワークの層に共通する唯一の特徴は、それらが共通の部分空間構造を持つ群に分割できることである。
上記の設定は非常に柔軟で、GRDPGを含む様々な既存の多重化ネットワークモデルを含む。
新たな手法を用いることで,Pensky と Wang (2024) の結果に対して, 階層の強い一貫したクラスタリングと高精度な部分空間推定を実現する。
論文の全てのアルゴリズムと理論的結果は、署名されたネットワークとバイナリネットワークの両方に当てはまる。
さらに,ネットワーク構築過程におけるエッジの符号の保持は,推定とクラスタリングの精度が向上し,脳ネットワーク解析などの現実的な問題に対処する上で有益であることを示す。
関連論文リスト
- Perfect Clustering in Very Sparse Diverse Multiplex Networks [4.070200285321219]
逆多重多重符号一般化ランダムドット製品グラフ(DIMPLE-SGRDPG)ネットワークモデル(Pensky (2024))について検討する。
すべての層は、同じグループの層が同じ周囲部分空間に埋め込まれるようにグループに分割することができる。
このモデルの主要なタスクは、ユニークな部分空間構造を持つレイヤのグループを復元することである。
論文 参考訳(メタデータ) (2025-07-25T16:43:42Z) - Multigraph Message Passing with Bi-Directional Multi-Edge Aggregations [5.193718340934995]
MEGA-GNNは、マルチグラフ上のメッセージパッシングのための統一されたフレームワークである。
我々は, MEGA-GNN が置換同変であるだけでなく,エッジ上で厳密な全順序付けを与えられることも示す。
実験の結果、MEGA-GNNはアンチ・モニー・ロンダリングのデータセットで最先端のソリューションを最大13%上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-29T20:15:18Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
本稿では、局所的な類似性、接続性、グローバル構造を教師なしで表現するグラフSylvester Embedding (GSE)を紹介する。
GSEはシルヴェスター方程式の解を用いて、ネットワーク構造と近傍の近接を1つの表現で捉える。
論文 参考訳(メタデータ) (2022-05-07T04:11:23Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
学習ノード表現は、コミュニティ検出やノード分類などのグラフ解析において、さまざまな下流タスクの恩恵を受ける。
教師なしの方法でノード表現を学習するための幾何学グラフ表現学習(G2R)を提案する。
G2R は異なるグループ内のノードを異なる部分空間にマッピングし、各部分空間はコンパクトで異なる部分空間が分散される。
論文 参考訳(メタデータ) (2022-02-13T07:46:24Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Clustering multilayer graphs with missing nodes [4.007017852999008]
クラスタリングはネットワーク分析における基本的な問題であり、同じ接続プロファイルを持つノードを再グループ化するのが目標である。
異なるノードセット上でレイヤを定義できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-04T18:56:59Z) - Multiplex Bipartite Network Embedding using Dual Hypergraph
Convolutional Networks [16.62391694987056]
非監視のデュアルグラフ畳み込みネットワーク(DualHGCN)モデルを開発し、マルチプレックスバイパートネットワークを2組の均質ハイパーグラフに変換します。
リンク予測とノード分類タスクの4つの実世界のデータセットを用いてDualHGCNをベンチマークする。
論文 参考訳(メタデータ) (2021-02-12T07:20:36Z) - Global and Individualized Community Detection in Inhomogeneous
Multilayer Networks [14.191073951237772]
ネットワークアプリケーションでは、同じ主題の集合上で観測される複数のネットワークの形でデータセットを取得することがますます一般的になっている。
このようなデータセットは、各レイヤが別々のネットワーク自身であるマルチレイヤネットワークによってモデル化され、異なるレイヤが関連付けられ、共通の情報を共有することができる。
本稿では,非均質な多層ネットワークモデルを用いたスタイリングによるコミュニティ検出について検討する。
論文 参考訳(メタデータ) (2020-12-02T02:42:52Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
本稿では,asp2vecと呼ばれるマルチアスペクトネットワーク埋め込みのための新しいエンドツーエンドフレームワークを提案する。
提案するフレームワークは容易に異種ネットワークに拡張できる。
論文 参考訳(メタデータ) (2020-06-07T19:26:20Z) - Non-Euclidean Universal Approximation [4.18804572788063]
ニューラルネットワークの入力層と出力層の修正は、多くの場合、最も実践的な学習タスクの特異性を満たすために必要である。
アーキテクチャの連続関数をコンパクトな上で一様に近似する能力を保った特徴写像と読み出し写像を記述した一般的な条件を示す。
論文 参考訳(メタデータ) (2020-06-03T15:38:57Z) - Consistency of Spectral Clustering on Hierarchical Stochastic Block
Models [5.983753938303726]
実世界のネットワークにおけるコミュニティの階層構造について,汎用ブロックモデルを用いて検討する。
本手法の強い一貫性を,幅広いモデルパラメータで証明する。
既存のほとんどの研究とは異なり、我々の理論は接続確率が桁違いに異なるかもしれないマルチスケールネットワークをカバーしている。
論文 参考訳(メタデータ) (2020-04-30T01:08:59Z) - Hierarchical clustering of bipartite data sets based on the statistical
significance of coincidences [0.0]
本稿では,2つのエンティティが共有する特徴が単なるチャンスに起因する確率を定量化するエンティティ間の相似性に基づく階層的クラスタリングアルゴリズムを提案する。
アルゴリズムのパフォーマンスは n 個のエンティティの集合に適用された場合$O(n2)$であり、その結果はそれらのエンティティの接続を示すデンドログラムである。
論文 参考訳(メタデータ) (2020-04-27T23:30:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。