論文の概要: Learning Memory Kernels in Generalized Langevin Equations
- arxiv url: http://arxiv.org/abs/2402.11705v2
- Date: Tue, 2 Apr 2024 03:04:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 08:39:34.229563
- Title: Learning Memory Kernels in Generalized Langevin Equations
- Title(参考訳): 一般化ランゲヴィン方程式におけるメモリカーネルの学習
- Authors: Quanjun Lang, Jianfeng Lu,
- Abstract要約: 一般化ランゲヴィン方程式におけるメモリカーネル学習のための新しい手法を提案する。
このアプローチは最初、軌道データから相関関数を推定するために正規化Prony法を使用し、続いてRKHS正則化を伴うソボレフノルムに基づく損失関数の回帰を行う。
- 参考スコア(独自算出の注目度): 5.266892492931388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel approach for learning memory kernels in Generalized Langevin Equations. This approach initially utilizes a regularized Prony method to estimate correlation functions from trajectory data, followed by regression over a Sobolev norm-based loss function with RKHS regularization. Our method guarantees improved performance within an exponentially weighted L^2 space, with the kernel estimation error controlled by the error in estimated correlation functions. We demonstrate the superiority of our estimator compared to other regression estimators that rely on L^2 loss functions and also an estimator derived from the inverse Laplace transform, using numerical examples that highlight its consistent advantage across various weight parameter selections. Additionally, we provide examples that include the application of force and drift terms in the equation.
- Abstract(参考訳): 一般化ランゲヴィン方程式におけるメモリカーネル学習のための新しい手法を提案する。
このアプローチは最初、軌道データから相関関数を推定するために正規化Prony法を使用し、続いてRKHS正則化を伴うソボレフノルムに基づく損失関数の回帰を行う。
提案手法では,推定相関関数の誤差によってカーネル推定誤差が制御され,指数重み付きL^2空間内での性能向上が保証される。
我々は,L^2損失関数に依存する回帰推定器や,逆ラプラス変換から導かれる推定器と比較して,各重みパラメータ選択における一貫した優位性を示す数値例を用いて,推定器の優位性を示す。
さらに、方程式における力およびドリフト項の適用を含む例を示す。
関連論文リスト
- Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
本稿では,対象関数が基礎となるカーネル空間に存在しないシナリオにおいて,分割・コンカレント推定器の収束性能について検討する。
分解に基づくスケーラブルなアプローチとして、関数線形回帰の分割・収束推定器は、時間とメモリにおけるアルゴリズムの複雑さを大幅に減らすことができる。
論文 参考訳(メタデータ) (2022-11-20T12:29:06Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - Sobolev Acceleration and Statistical Optimality for Learning Elliptic
Equations via Gradient Descent [11.483919798541393]
本研究では,無作為なサンプルノイズ観測から逆問題解くために,ソボレフの勾配降下ノルムの統計的限界について検討する。
我々の目的関数のクラスには、カーネル回帰のためのソボレフトレーニング、Deep Ritz Methods(DRM)、Physical Informed Neural Networks(PINN)が含まれる。
論文 参考訳(メタデータ) (2022-05-15T17:01:53Z) - A generalization gap estimation for overparameterized models via the
Langevin functional variance [6.231304401179968]
関数分散は過パラメータ設定においても一般化ギャップを特徴付けることを示す。
本稿では,関数分散の効率的な近似,関数分散のランゲヴィン近似(Langevin FV)を提案する。
論文 参考訳(メタデータ) (2021-12-07T12:43:05Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Statistical inference using Regularized M-estimation in the reproducing
kernel Hilbert space for handling missing data [0.76146285961466]
まずカーネルリッジレグレッションを用いてアイテム非応答の処理を行う。
カーネルヒルベルト空間を用いた非パラメトリック確率スコア推定器も開発した。
提案手法は,中国北京で測定された大気汚染データを解析するためのものである。
論文 参考訳(メタデータ) (2021-07-15T14:51:39Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
非パラメトリック回帰におけるガウス過程の先行したベイズ法の後部収縮率について検討する。
カーネルの一般クラスに対しては、回帰関数とその微分の後方測度の収束率を確立する。
我々の証明は、ある条件下では、ベイズ推定器の任意の収束率に対して、後部分布の同じ収束率に対応することを示す。
論文 参考訳(メタデータ) (2020-11-27T19:11:56Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。