論文の概要: What if LLMs Have Different World Views: Simulating Alien Civilizations
with LLM-based Agents
- arxiv url: http://arxiv.org/abs/2402.13184v2
- Date: Wed, 21 Feb 2024 04:54:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-02-22 11:57:26.480705
- Title: What if LLMs Have Different World Views: Simulating Alien Civilizations
with LLM-based Agents
- Title(参考訳): LLMが世界観を異にするとしたら? LLMをベースとしたエージェントによるエイリアン文明のシミュレーション
- Authors: Mingyu Jin, Beichen Wang, Zhaoqian Xue, Suiyuan Zhu, Wenyue Hua, Hua
Tang, Kai Mei, Mengnan Du, Yongfeng Zhang
- Abstract要約: コスモアジェント(CosmoAgent)は、人類と地球外文明の複雑な相互作用をシミュレートする人工知能の枠組みである。
目標は、善意の文明を脅かす可能性のあるリスクを考慮しつつ、平和的な共存の実現可能性を評価することである。
この興味深い研究分野のさらなる学術的な調査を可能にするために、コードとデータセットをリリースしました。
- 参考スコア(独自算出の注目度): 41.651082318510845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we introduce "CosmoAgent," an innovative artificial
intelligence framework utilizing Large Language Models (LLMs) to simulate
complex interactions between human and extraterrestrial civilizations, with a
special emphasis on Stephen Hawking's cautionary advice about not sending radio
signals haphazardly into the universe. The goal is to assess the feasibility of
peaceful coexistence while considering potential risks that could threaten
well-intentioned civilizations. Employing mathematical models and state
transition matrices, our approach quantitatively evaluates the development
trajectories of civilizations, offering insights into future decision-making at
critical points of growth and saturation. Furthermore, the paper acknowledges
the vast diversity in potential living conditions across the universe, which
could foster unique cosmologies, ethical codes, and worldviews among various
civilizations. Recognizing the Earth-centric bias inherent in current LLM
designs, we propose the novel concept of using LLMs with diverse ethical
paradigms and simulating interactions between entities with distinct moral
principles. This innovative research provides a new way to understand complex
inter-civilizational dynamics, expanding our perspective while pioneering novel
strategies for conflict resolution, crucial for preventing interstellar
conflicts. We have also released the code and datasets to enable further
academic investigation into this interesting area of research. The code is
available at https://github.com/agiresearch/AlienAgent.
- Abstract(参考訳): 本研究では,人間と地球外文明の複雑な相互作用をシミュレートするために,大規模言語モデル(llm)を活用した革新的な人工知能フレームワークであるcosmoagentを紹介する。
目標は、善意の文明を脅かす可能性のあるリスクを考慮しつつ、平和的な共存の可能性を評価することである。
数理モデルと状態遷移行列を用いて,文明の発展過程を定量的に評価し,成長と飽和の重要点における今後の意思決定への洞察を提供する。
さらに、この論文は宇宙の潜在的な生活環境の多様性を認めており、様々な文明における独自の宇宙論、倫理的規範、世界観を育むことができる。
現在のLLM設計に固有の地球中心バイアスを認識し、多様な倫理的パラダイムを持つLLMの使用と、異なる道徳的原理を持つエンティティ間の相互作用をシミュレートする新しい概念を提案する。
この革新的な研究は、複雑な文明間ダイナミクスを理解する新しい方法を提供し、我々の視点を広げ、星間衝突を防ぐために不可欠な紛争解決のための新しい戦略を開拓する。
この興味深い研究分野のさらなる学術的な調査を可能にするために、コードとデータセットもリリースしました。
コードはhttps://github.com/agiresearch/alienagentで入手できる。
関連論文リスト
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
本稿では,社会シミュレーションのためのエージェント駆動世界モデルであるSocioVerseを紹介する。
私たちのフレームワークは、4つの強力なアライメントコンポーネントと1000万の実際の個人からなるユーザプールを備えています。
SocioVerseは、多様性、信頼性、代表性を確保しつつ、大規模な人口動態を反映できることを示した。
論文 参考訳(メタデータ) (2025-04-14T12:12:52Z) - Measurement of LLM's Philosophies of Human Nature [113.47929131143766]
大規模言語モデル(LLM)を対象とする標準化された心理尺度を設計する。
現在のLSMは、人間に対する信頼の欠如を示す。
本稿では,LLMが継続的に価値体系を最適化できるメンタルループ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-03T06:22:19Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - From Text to Life: On the Reciprocal Relationship between Artificial Life and Large Language Models [18.888208951616008]
大規模言語モデル(LLM)は、AIの分野を嵐によって捉えてきたが、ALife(Artificial Life)分野への採用は、これまでは比較的限定的だった。
例えば、進化のオペレーターやオープンエンド環境の生成など、ALife研究のツールとしてのLLMの可能性を探る。
論文 参考訳(メタデータ) (2024-06-14T07:45:32Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
一般世界モデルは、人工知能(AGI)の実現への決定的な道のりを表現している
本調査では,世界モデルの最新動向を包括的に調査する。
我々は,世界モデルの課題と限界について検討し,今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:37:07Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - Large Language Models Need Consultants for Reasoning: Becoming an Expert in a Complex Human System Through Behavior Simulation [5.730580726163518]
大規模言語モデル(LLM)は、数学、法学、コーディング、常識、世界知識といった分野において、人間に匹敵する優れた能力を示してきた。
本稿では,生成エージェントによるシミュレーション技術を活用した新たな推論フレームワークであるMosaic Expert Observation Wall' (MEOW)を提案する。
論文 参考訳(メタデータ) (2024-03-27T03:33:32Z) - A Moral Imperative: The Need for Continual Superalignment of Large Language Models [1.0499611180329806]
スーパーアライメント(Superalignment)は、超知能AIシステムが人間の価値観や目標に応じて行動することを確実にする理論フレームワークである。
本稿では,AIシステム,特に大規模言語モデル(LLM)における生涯的スーパーアライメントの実現に関わる課題について検討する。
論文 参考訳(メタデータ) (2024-03-13T05:44:50Z) - CERN for AGI: A Theoretical Framework for Autonomous Simulation-Based
Artificial Intelligence Testing and Alignment [1.9212368803706583]
本研究では,現実世界の環境を再現するバーチャルリアリティー・フレームワークにおける,革新的なシミュレーションに基づくマルチエージェントシステムについて検討する。
このフレームワークは、複雑な社会構造と相互作用をシミュレートし、AGIを検査し最適化する自動化された「デジタル市民」によって人口が占められている。
論文 参考訳(メタデータ) (2023-12-14T23:48:51Z) - MacGyver: Are Large Language Models Creative Problem Solvers? [87.70522322728581]
本稿では, 現代LLMの創造的問題解決能力について, 制約付き環境下で検討する。
我々は1,600以上の実世界の問題からなる自動生成データセットであるMACGYVERを作成する。
我々はLLMと人間の両方にコレクションを提示し、それらの問題解決能力を比較して比較する。
論文 参考訳(メタデータ) (2023-11-16T08:52:27Z) - Simulating Opinion Dynamics with Networks of LLM-based Agents [7.697132934635411]
本稿では,Large Language Models (LLMs) の集団に基づく意見力学のシミュレーション手法を提案する。
以上の結果から, LLMエージェントの正確な情報生成に対するバイアスが強く, シミュレーションエージェントが科学的現実に一致していることが明らかとなった。
しかし、素早い工学を通して確認バイアスを誘導した後、既存のエージェント・ベース・モデリングや意見ダイナミクス研究と並んで意見の断片化を観察した。
論文 参考訳(メタデータ) (2023-11-16T07:01:48Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
本稿では、知的行動を示す人工知能エージェントの開発に使用される2つのAIサブセクタの統合について考察する:大規模言語モデル(LLM)と認知アーキテクチャ(CA)である。
我々は3つの統合的アプローチを提案し、それぞれ理論モデルに基づいて、予備的な経験的証拠によって支持される。
これらのアプローチは、LSMとCAの長所を活用すると同時に、弱点を軽減し、より堅牢なAIシステムの開発を促進することを目的としている。
論文 参考訳(メタデータ) (2023-08-18T21:42:47Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
本稿では,知的エージェントの4つの特徴について述べる。
実世界の物体との活発な関わりは、概念的表現を形成するためのより堅牢な信号をもたらすと我々は主張する。
我々は、人工知能分野における将来的な研究の方向性を概説して結論付ける。
論文 参考訳(メタデータ) (2023-07-07T13:58:16Z) - Voluminous yet Vacuous? Semantic Capital in an Age of Large Language
Models [0.0]
大きな言語モデル(LLM)は、自然言語処理の領域において変換力として出現し、人間のようなテキストを生成する力を持つ。
本稿では、これらのモデルの進化、能力、限界について考察し、それらが引き起こす倫理的懸念を強調した。
論文 参考訳(メタデータ) (2023-05-29T09:26:28Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。