論文の概要: A Systematic Review of Low-Rank and Local Low-Rank Matrix Approximation in Big Data Medical Imaging
- arxiv url: http://arxiv.org/abs/2402.14045v3
- Date: Mon, 27 May 2024 06:00:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 07:05:34.324243
- Title: A Systematic Review of Low-Rank and Local Low-Rank Matrix Approximation in Big Data Medical Imaging
- Title(参考訳): Big Data Medical Imaging における低域および局所低域マトリックス近似の体系的検討
- Authors: Sisipho Hamlomo, Marcellin Atemkeng, Yusuf Brima, Chuneeta Nunhokee, Jeremy Baxter,
- Abstract要約: 医療画像データセットの膨大な量と複雑さは、ストレージ、送信、処理のボトルネックである。
低ランク行列近似(LRMA)とその誘導体である局所LRMA(LLRMA)はポテンシャルを示した。
本稿では、LRMAとLLRMAが、欠落したエントリを持つ正規データに対してどのように適用できるかと、欠落した値の予測における不正確さの影響について論じる。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The large volume and complexity of medical imaging datasets are bottlenecks for storage, transmission, and processing. To tackle these challenges, the application of low-rank matrix approximation (LRMA) and its derivative, local LRMA (LLRMA) has demonstrated potential. A detailed analysis of the literature identifies LRMA and LLRMA methods applied to various imaging modalities, and the challenges and limitations associated with existing LRMA and LLRMA methods are addressed. We note a significant shift towards a preference for LLRMA in the medical imaging field since 2015, demonstrating its potential and effectiveness in capturing complex structures in medical data compared to LRMA. Acknowledging the limitations of shallow similarity methods used with LLRMA, we suggest advanced semantic image segmentation for similarity measure, explaining in detail how it can be used to measure similar patches and its feasibility. We note that LRMA and LLRMA are mainly applied to unstructured medical data, and we propose extending their application to different medical data types, including structured and semi-structured. This paper also discusses how LRMA and LLRMA can be applied to regular data with missing entries and the impact of inaccuracies in predicting missing values and their effects. We discuss the impact of patch size and propose the use of random search (RS) to determine the optimal patch size. To enhance feasibility, a hybrid approach using Bayesian optimization and RS is proposed, which could improve the application of LRMA and LLRMA in medical imaging.
- Abstract(参考訳): 医療画像データセットの膨大な量と複雑さは、ストレージ、送信、処理のボトルネックである。
これらの課題に対処するため、低ランク行列近似(LRMA)とその誘導体である局所LRMA(LLRMA)の適用の可能性が示された。
文献の詳細な分析では、様々な画像モダリティに適用されたLRMA法とLLRMA法を同定し、既存のLRMA法とLLRMA法に関連する課題と限界に対処する。
2015年以降の医療画像分野におけるLLRMAの嗜好への大きな変化は、LRMAと比較して、医療データにおける複雑な構造を捉える可能性と有効性を示している。
LLRMAで用いられる浅部類似度手法の限界を認識し、類似度測定のための高度なセマンティックイメージセグメンテーションを提案する。
LRMAとLLRMAは、主に非構造化医療データに適用され、構造化・半構造化を含む様々な医療データタイプに応用範囲を広げることを提案する。
また、LRMAとLLRMAは、欠落したエントリを持つ正規データに対してどのように適用できるのか、また、欠落した値とその影響を予測するための不正確さの影響についても論じる。
パッチサイズの影響を議論し、最適なパッチサイズを決定するためにランダム検索(RS)を提案する。
医療画像におけるLRMAとLLRMAの適用性を向上させるため,ベイズ最適化とRSを用いたハイブリッドアプローチを提案する。
関連論文リスト
- ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Explainable unsupervised multi-modal image registration using deep
networks [2.197364252030876]
MRI画像登録は、異なるモダリティ、時間点、スライスから幾何学的に「ペア」診断することを目的としている。
本研究では,我々のDLモデルが完全に説明可能であることを示し,さらなる医用画像データへのアプローチを一般化するための枠組みを構築した。
論文 参考訳(メタデータ) (2023-08-03T19:13:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - sMRI-PatchNet: A novel explainable patch-based deep learning network for
Alzheimer's disease diagnosis and discriminative atrophy localisation with
Structural MRI [18.234996137020406]
3次元高解像度データのサイズは、データ分析と処理において大きな課題となる。
パッチベースの手法では、画像データを複数の小さな正規パッチに分割することで、より効率的なsMRIベースの画像解析が可能であることが示されている。
本研究は、sMRIを用いたアルツハイマー病診断のための、説明可能なパッチローカライズと選択が可能なパッチベースの新しいディープラーニングネットワーク(sMRI-PatchNet)を提案する。
論文 参考訳(メタデータ) (2023-02-17T16:01:15Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
行列分解 (MF) を一定の制約で考慮し, 様々な分野の応用を見いだす。
我々は,効率の良いメッセージパッシング実装であるUAMPMFを用いて,MFに対するベイズ的アプローチを開発する。
UAMPMFは、回復精度、ロバスト性、計算複雑性の観点から、最先端のアルゴリズムを著しく上回ることを示す。
論文 参考訳(メタデータ) (2022-07-31T12:09:32Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
本稿では,MRI合成のための深層学習に基づくマルチモーダル計算モデルを提案する。
提案手法は,各入力モダリティを,共有情報と特定の情報を持つモダリティ固有空間で分割する。
テストフェーズにおける目標モダリティの特定情報の欠如に対処するために、局所適応融合(laf)モジュールを採用してモダリティライクな擬似ターゲットを生成する。
論文 参考訳(メタデータ) (2021-05-06T17:22:22Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - An Investigation of Feature-based Nonrigid Image Registration using
Gaussian Process [7.794591205048958]
我々は変形場をガウス過程(GP)と考える。
我々は高密度変位場とそれに対応する不確実性写像の両方を同時に推定することができる。
GPベースの最大の臨床的利点は、計算された高密度変位マップの数学的不確かさを確実に見積もることである。
論文 参考訳(メタデータ) (2020-01-12T20:51:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。