Deepfake Detection and the Impact of Limited Computing Capabilities
- URL: http://arxiv.org/abs/2402.14825v1
- Date: Thu, 8 Feb 2024 11:04:34 GMT
- Title: Deepfake Detection and the Impact of Limited Computing Capabilities
- Authors: Paloma Cantero-Arjona, Alfonso S\'anchez-Maci\'an
- Abstract summary: This work aims to address the detection of deepfakes across various existing datasets in a scenario with limited computing resources.
The goal is to analyze the applicability of different deep learning techniques under these restrictions and explore possible approaches to enhance their efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid development of technologies and artificial intelligence makes
deepfakes an increasingly sophisticated and challenging-to-identify technique.
To ensure the accuracy of information and control misinformation and mass
manipulation, it is of paramount importance to discover and develop artificial
intelligence models that enable the generic detection of forged videos. This
work aims to address the detection of deepfakes across various existing
datasets in a scenario with limited computing resources. The goal is to analyze
the applicability of different deep learning techniques under these
restrictions and explore possible approaches to enhance their efficiency.
Related papers
- Object Detection and Tracking [0.0]
Project aims to integrate a modern technique for object detection with the aim of achieving high accuracy with real-time performance.
In this research, we solve the end-to-end object detection problem entirely using deep learning techniques.
arXiv Detail & Related papers (2025-02-14T17:13:52Z) - State-of-the-art AI-based Learning Approaches for Deepfake Generation and Detection, Analyzing Opportunities, Threading through Pros, Cons, and Future Prospects [0.0]
Deepfake technologies are designed to create incredibly lifelike facial imagery and video content.
This review paper meticulously investigates the most recent developments in deepfake generation and detection, including around 400 publications.
arXiv Detail & Related papers (2025-01-02T03:19:21Z) - Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
Deep Learning has been successfully applied in diverse fields, and its impact on deepfake detection is no exception.
Deepfakes are fake yet realistic synthetic content that can be used deceitfully for political impersonation, phishing, slandering, or spreading misinformation.
This paper aims to improve the effectiveness of deepfake detection strategies and guide future research in cybersecurity and media integrity.
arXiv Detail & Related papers (2024-11-12T09:02:11Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
Deep learning has enabled the creation or manipulation of high-fidelity facial images and videos.
This technology, also known as deepfake, has achieved dramatic progress and become increasingly popular in social media.
To diminish the risks of deepfake, it is desirable to develop powerful forgery detection methods.
arXiv Detail & Related papers (2024-09-22T01:42:01Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - Collaborative Knowledge Infusion for Low-resource Stance Detection [83.88515573352795]
Target-related knowledge is often needed to assist stance detection models.
We propose a collaborative knowledge infusion approach for low-resource stance detection tasks.
arXiv Detail & Related papers (2024-03-28T08:32:14Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Deepfakes Generation and Detection: State-of-the-art, open challenges,
countermeasures, and way forward [2.15242029196761]
It is possible to generate deepfakes to disseminate disinformation, revenge porn, financial frauds, hoaxes, and to disrupt government functioning.
No attempt has been made to review approaches for detection and generation of both audio and video deepfakes.
This paper provides a comprehensive review and detailed analysis of existing tools and machine learning (ML) based approaches for deepfake generation.
arXiv Detail & Related papers (2021-02-25T18:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.