論文の概要: Quantum Theory and Application of Contextual Optimal Transport
- arxiv url: http://arxiv.org/abs/2402.14991v3
- Date: Mon, 3 Jun 2024 15:42:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 16:28:21.082131
- Title: Quantum Theory and Application of Contextual Optimal Transport
- Title(参考訳): 量子論とコンテキスト最適輸送の応用
- Authors: Nicola Mariella, Albert Akhriev, Francesco Tacchino, Christa Zoufal, Juan Carlos Gonzalez-Espitia, Benedek Harsanyi, Eugene Koskin, Ivano Tavernelli, Stefan Woerner, Marianna Rapsomaniki, Sergiy Zhuk, Jannis Born,
- Abstract要約: 本稿では、文脈化された輸送計画の記憶的最適化のための、第一種量子コンピューティングの定式化を提案する。
従来のニューラルOTアプローチと一致しない性能を報告する。
- 参考スコア(独自算出の注目度): 2.160404814399144
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optimal Transport (OT) has fueled machine learning (ML) across many domains. When paired data measurements $(\boldsymbol{\mu}, \boldsymbol{\nu})$ are coupled to covariates, a challenging conditional distribution learning setting arises. Existing approaches for learning a $\textit{global}$ transport map parameterized through a potentially unseen context utilize Neural OT and largely rely on Brenier's theorem. Here, we propose a first-of-its-kind quantum computing formulation for amortized optimization of contextualized transportation plans. We exploit a direct link between doubly stochastic matrices and unitary operators thus unravelling a natural connection between OT and quantum computation. We verify our method (QontOT) on synthetic and real data by predicting variations in cell type distributions conditioned on drug dosage. Importantly we conduct a 24-qubit hardware experiment on a task challenging for classical computers and report a performance that cannot be matched with our classical neural OT approach. In sum, this is a first step toward learning to predict contextualized transportation plans through quantum computing.
- Abstract(参考訳): Optimal Transport(OT)は多くのドメインにわたって機械学習(ML)を推進している。
ペアデータの測定値 $(\boldsymbol{\mu}, \boldsymbol{\nu})$ を共変量に結合すると、困難な条件分布学習環境が発生する。
既存のアプローチによる$\textit{global}$トランスポートマップの学習は、潜在的に見えない文脈でパラメータ化され、Neural OTを用いており、ブレニエの定理に大きく依存している。
本稿では、文脈化された輸送計画の償却最適化のための、第一種量子コンピューティングの定式化を提案する。
両立確率行列とユニタリ演算子との直接リンクを利用して、OTと量子計算との自然な接続を悪化させる。
薬物投与量に応じた細胞型分布の変動を予測し, 合成データと実データに基づいて本手法(QontOT)を検証する。
重要なことは、24量子ビットのハードウェア実験を、古典的コンピュータに挑戦するタスクで実施し、我々の古典的ニューラルOTアプローチと一致しない性能を報告している。
要約すると、これは量子コンピューティングを通じてコンテキスト化された輸送計画を予測することを学ぶための第一歩である。
関連論文リスト
- Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction [55.89763969583124]
最適輸送理論はそのような写像を構築するための原則化された枠組みを提供する。
本稿では,Wasserstein-1に基づく新しい最適輸送解法を提案する。
実験により,提案した解法は,2次元データセット上に一意かつ単調な写像を求める際に,$W$ OTソルバを模倣できることを示した。
論文 参考訳(メタデータ) (2024-11-01T14:23:19Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Progressive Entropic Optimal Transport Solvers [33.821924561619895]
本稿では,計画図と輸送地図の両方を推定できる新しいEOT解法(ProgOT)を提案する。
我々は,ProgOTが標準解法よりも高速で堅牢な代替手段であることを示す実験的な証拠を提供する。
また、最適な輸送地図を推定するためのアプローチの統計的整合性も証明する。
論文 参考訳(メタデータ) (2024-06-07T16:33:08Z) - GeONet: a neural operator for learning the Wasserstein geodesic [13.468026138183623]
本稿では、初期分布と終端分布の入力対から2つのエンドポイント分布を接続するワッサーシュタイン測地線への非線形マッピングを学習するメッシュ不変なディープニューラルネットワークであるGeONetを提案する。
シミュレーション例では,GeONet が標準 OT ソルバと同等の精度で,MNIST データセットに比較して,予測段階の計算コストを桁違いに大幅に削減することを示した。
論文 参考訳(メタデータ) (2022-09-28T21:55:40Z) - Neural Optimal Transport with General Cost Functionals [66.41953045707172]
一般費用関数の最適輸送計画を計算するニューラルネットワークに基づく新しいアルゴリズムを提案する。
アプリケーションとして,クラス単位の構造を保ちながら,データ分布をマップするコスト関数を構築した。
論文 参考訳(メタデータ) (2022-05-30T20:00:19Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
フロゼットボン2021ローランで提唱された低ランク最適輸送(LOT)アプローチ
LOTは興味のある性質と比較した場合、エントロピー正則化の正当な候補と見なされる。
本稿では,これらの領域のそれぞれを対象とし,計算OTにおける低ランクアプローチの影響を補強する。
論文 参考訳(メタデータ) (2022-05-24T20:51:37Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - A Survey on Optimal Transport for Machine Learning: Theory and
Applications [1.1279808969568252]
最適輸送(OT)理論はコンピュータ科学コミュニティから注目を集めている。
本稿では,簡単な紹介と歴史,先行研究の紹介,今後の研究の方向性について述べる。
論文 参考訳(メタデータ) (2021-06-03T16:10:42Z) - Unsupervised Ground Metric Learning using Wasserstein Eigenvectors [0.0]
主なボトルネックは、研究対象のタスクに適応すべき「基礎」コストの設計である。
本論文では,コストを入力間のペアワイズOT距離にマッピングする関数の正の固有ベクトルとして,接地コストを計算することで,正の正の答えを初めて提案する。
また,主成分分析次元の低減を行うエントロピー正則化を用いたスケーラブルな計算手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T21:32:59Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Regularized Optimal Transport is Ground Cost Adversarial [34.81915836064636]
最適輸送問題の正則化は, 地価逆数と解釈できることを示す。
これにより、地上空間上のロバストな異性度測度にアクセスでき、他のアプリケーションで使用することができる。
論文 参考訳(メタデータ) (2020-02-10T17:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。