論文の概要: Supervised machine learning for microbiomics: bridging the gap between current and best practices
- arxiv url: http://arxiv.org/abs/2402.17621v3
- Date: Mon, 30 Sep 2024 23:54:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:31:40.196915
- Title: Supervised machine learning for microbiomics: bridging the gap between current and best practices
- Title(参考訳): 微生物学のための機械学習の監督--現状とベストプラクティスのギャップを埋める
- Authors: Natasha K. Dudek, Mariam Chakhvadze, Saba Kobakhidze, Omar Kantidze, Yuriy Gankin,
- Abstract要約: 機械学習(ML)は、臨床微生物学の革新を加速する。
ここでは、マイクロバイオミクスデータへの教師付きMLの適用における現在のプラクティスのスナップショットをキャプチャする。
実験設計における様々なアプローチのメリットについて,データ駆動型アプローチをステアディスカッションに適用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning (ML) is set to accelerate innovations in clinical microbiomics, such as in disease diagnostics and prognostics. This will require high-quality, reproducible, interpretable workflows whose predictive capabilities meet or exceed the high thresholds set for clinical tools by regulatory agencies. Here, we capture a snapshot of current practices in the application of supervised ML to microbiomics data, through an in-depth analysis of 100 peer-reviewed journal articles published in 2021-2022. We apply a data-driven approach to steer discussion of the merits of varied approaches to experimental design, including key considerations such as how to mitigate the effects of small dataset size while avoiding data leakage. We further provide guidance on how to avoid common experimental design pitfalls that can hurt model performance, trustworthiness, and reproducibility. Discussion is accompanied by an interactive online tutorial that demonstrates foundational principles of ML experimental design, tailored to the microbiomics community. Formalizing community best practices for supervised ML in microbiomics is an important step towards improving the success and efficiency of clinical research, to the benefit of patients and other stakeholders.
- Abstract(参考訳): 機械学習(ML)は、疾患診断や予後学などの臨床微生物学の革新を加速する。
このためには高品質で再現可能な、解釈可能なワークフローが必要で、予測能力は、規制機関によって設定された臨床ツールに設定された高いしきい値を満たすか、超過する。
ここでは、2021-2022年に発行された100の査読論文の詳細な分析を通して、教師付きMLを微生物学データに適用する際の現在の実践のスナップショットをとらえる。
実験設計における様々なアプローチのメリットについて,データ漏洩を避けながら,小さなデータセットサイズの影響を緩和する方法などの重要な考察を含め,データ駆動型アプローチを適用した。
さらに、モデルの性能、信頼性、再現性を損なうような、一般的な実験的な設計の落とし穴を避けるためのガイダンスも提供します。
議論にはインタラクティブなオンラインチュートリアルが伴い、マイクロバイオミクスコミュニティに合わせたML実験設計の基本原則が示されている。
微生物学における教師付きMLのためのコミュニティのベストプラクティスの形式化は、患者や他のステークホルダーの利益のために、臨床研究の成功と効率を改善するための重要なステップである。
関連論文リスト
- Stronger Baseline Models -- A Key Requirement for Aligning Machine Learning Research with Clinical Utility [0.0]
機械学習モデルを高精細な臨床環境にデプロイしようとするとき、よく知られた障壁が存在する。
評価において,より強力なベースラインモデルを含むと,下流効果が重要となることを実証的に示す。
本稿では,MLモデルを臨床現場でより効果的に研究・展開するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2024-09-18T16:38:37Z) - Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification [8.975676404678374]
低データ体制下で訓練されたモデルの性能と一般化能力を改善するための戦略を提案する。
提案手法は、自己教師付き学習環境において学習した特徴をアンタングル化して、下流タスクの表現の堅牢性を向上する事前学習段階から開始する。
次に、メタファインニングのステップを導入し、メタトレーニングとメタテストフェーズの関連クラスを活用するが、レベルは変化する。
論文 参考訳(メタデータ) (2024-03-26T09:36:20Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Deep Learning for Automated Experimentation in Scanning Transmission
Electron Microscopy [0.0]
機械学習(ML)は、()透過電子顕微鏡、走査(S)TEM、イメージング、分光法において、取得後のデータ解析に欠かせないものとなっている。
本稿では, 逐次データ解析とアウト・オブ・ディストリビューションドリフト効果を含む, アクティブMLへの移行に伴う課題について論じる。
これらの考察は、次世代実験におけるMLの運用を総括的に示すものである。
論文 参考訳(メタデータ) (2023-04-04T18:01:56Z) - Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications [0.0]
本稿では, バイオメディカル問題データセットの k-fold cross-validation (CV) への階層化のための新しい計算手法を提案する。
このアプローチはモデルの安定性を改善し、信頼を確立し、トレーニングされたIMLモデルによって生成された結果の説明を提供する。
論文 参考訳(メタデータ) (2023-03-15T12:02:02Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。