論文の概要: $ζ$-QVAE: A Quantum Variational Autoencoder utilizing Regularized Mixed-state Latent Representations
- arxiv url: http://arxiv.org/abs/2402.17749v2
- Date: Fri, 2 Aug 2024 19:13:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 23:26:29.713996
- Title: $ζ$-QVAE: A Quantum Variational Autoencoder utilizing Regularized Mixed-state Latent Representations
- Title(参考訳): $$-QVAE:正規化混合状態潜在表現を用いた量子変分オートエンコーダ
- Authors: Gaoyuan Wang, Jonathan Warrell, Prashant S. Emani, Mark Gerstein,
- Abstract要約: 短期量子コンピューティングにおける大きな課題は、量子ハードウェアリソースの不足による大規模な実世界のデータセットへの適用である。
古典的VAEのすべての機能を含む完全量子フレームワークである$zeta$-QVAEを提示する。
この結果から, $zeta$-QVAE は古典モデルとよく似た性能を示した。
- 参考スコア(独自算出の注目度): 1.0687104237121408
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A major challenge in near-term quantum computing is its application to large real-world datasets due to scarce quantum hardware resources. One approach to enabling tractable quantum models for such datasets involves compressing the original data to manageable dimensions while still representing essential information for downstream analysis. In classical machine learning, variational autoencoders (VAEs) facilitate efficient data compression, representation learning for subsequent tasks, and novel data generation. However, no model has been proposed that exactly captures all of these features for direct application to quantum data on quantum computers. Some existing quantum models for data compression lack regularization of latent representations, thus preventing direct use for generation and control of generalization. Others are hybrid models with only some internal quantum components, impeding direct training on quantum data. To bridge this gap, we present a fully quantum framework, $\zeta$-QVAE, which encompasses all the capabilities of classical VAEs and can be directly applied for both classical and quantum data compression. Our model utilizes regularized mixed states to attain optimal latent representations. It accommodates various divergences for reconstruction and regularization. Furthermore, by accommodating mixed states at every stage, it can utilize the full-data density matrix and allow for a "global" training objective. Doing so, in turn, makes efficient optimization possible and has potential implications for private and federated learning. In addition to exploring the theoretical properties of $\zeta$-QVAE, we demonstrate its performance on representative genomics and synthetic data. Our results consistently indicate that $\zeta$-QVAE exhibits similar or better performance compared to matched classical models.
- Abstract(参考訳): 短期量子コンピューティングにおける大きな課題は、量子ハードウェアリソースの不足による大規模な実世界のデータセットへの適用である。
このようなデータセットに対してトラクタブルな量子モデルを可能にするアプローチの1つは、下流分析に不可欠な情報を示しながら、元のデータを管理可能な次元に圧縮することである。
古典的機械学習では、変動オートエンコーダ(VAE)は効率的なデータ圧縮、その後のタスクの表現学習、新しいデータ生成を容易にする。
しかし、量子コンピュータ上での量子データへの直接適用のために、これらの特徴をすべて正確に捉えるモデルが提案されていない。
データ圧縮のための既存の量子モデルは、潜在表現の正規化を欠いているため、一般化の生成と制御に直接的な使用を妨げている。
他のモデルは、いくつかの内部量子成分しか持たないハイブリッドモデルであり、量子データを直接訓練することを妨げている。
このギャップを埋めるために、古典的VAEのすべての能力を包含し、古典的データ圧縮と量子的データ圧縮の両方に直接適用できる完全量子フレームワークである$\zeta$-QVAEを提案する。
我々のモデルは、正規化された混合状態を利用して最適な潜在表現を得る。
再建・正規化に様々な違いがある。
さらに、各段階で混合状態の調整を行うことで、全データ密度行列を利用でき、"グローバル"トレーニングの目的を達成できる。
そうすることで効率の良い最適化が可能になり、プライベートとフェデレーションの学習に潜在的に影響する可能性がある。
我々は,$\zeta$-QVAEの理論的性質の探索に加えて,代表ゲノミクスと合成データの性能を実証する。
我々の結果は、$\zeta$-QVAEがマッチした古典モデルと比較すると、類似またはより良い性能を示すことを一貫して示している。
関連論文リスト
- Training quantum machine learning models on cloud without uploading the data [0.0]
本稿では,入力データを符号化する前にパラメータ化量子回路を動作させる手法を提案する。
これにより、データセット所有者は、量子クラウドプラットフォーム上で機械学習モデルをトレーニングすることができる。
また、後に古典的な計算を用いて大量のデータを効果的に符号化することも可能である。
論文 参考訳(メタデータ) (2024-09-06T20:14:52Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - Disentangling Quantum and Classical Contributions in Hybrid Quantum
Machine Learning Architectures [4.646930308096446]
ハイブリッドトランスファー学習ソリューションが開発され、訓練済みの古典モデルと量子回路を融合した。
それぞれのコンポーネント(古典的、量子的)がモデルの結果にどの程度貢献するかは、まだ不明である。
本稿では,プレトレーニングされたネットワークを圧縮に利用する代わりに,オートエンコーダを用いて,圧縮したデータから圧縮したデータを導出するハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-09T18:13:50Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Variational quantum regression algorithm with encoded data structure [0.21756081703276003]
量子状態が古典的データテーブルを直接エンコードする量子回帰アルゴリズムを構築する。
量子サブルーチンを通して、古典的なデータ構造のリンクを直接利用することができることを示す。
論文 参考訳(メタデータ) (2023-07-07T00:30:16Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Entangled Datasets for Quantum Machine Learning [0.0]
代わりに量子状態からなる量子データセットを使うべきだと我々は主張する。
NTangledデータセットの状態を生成するために量子ニューラルネットワークをどのように訓練するかを示す。
また、拡張性があり、量子回路によって準備された状態で構成される、別の絡み合いベースのデータセットについても検討する。
論文 参考訳(メタデータ) (2021-09-08T02:20:13Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
我々は,古典的データを量子状態に効率よくロードし,距離推定を行う手法を用いて,量子近接Centroid分類器を設計する。
MNIST手書き桁データセットの古典的最寄りのセントロイド分類器の精度と8次元合成データの最大100%の精度とを一致させ,11量子ビットトラップイオン量子マシン上で実験的に実証した。
論文 参考訳(メタデータ) (2020-12-08T01:10:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。