論文の概要: Graph Neural Networks and Arithmetic Circuits
- arxiv url: http://arxiv.org/abs/2402.17805v2
- Date: Thu, 21 Nov 2024 15:34:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:16:37.919768
- Title: Graph Neural Networks and Arithmetic Circuits
- Title(参考訳): グラフニューラルネットワークと算術回路
- Authors: Timon Barlag, Vivian Holzapfel, Laura Strieker, Jonni Virtema, Heribert Vollmer,
- Abstract要約: グラフニューラルネットワークアーキテクチャに従うニューラルネットワークの計算能力の特徴付けを行う。
多様なアクティベーション関数と実数演算を用いたGNNの表現率の正確な対応性を確立する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We characterize the computational power of neural networks that follow the graph neural network (GNN) architecture, not restricted to aggregate-combine GNNs or other particular types. We establish an exact correspondence between the expressivity of GNNs using diverse activation functions and arithmetic circuits over real numbers. In our results the activation function of the network becomes a gate type in the circuit. Our result holds for families of constant depth circuits and networks, both uniformly and non-uniformly, for all common activation functions.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)アーキテクチャに従うニューラルネットワークの計算能力は,集約結合型GNNや他の特定のタイプに限定されない。
実数上での多様なアクティベーション関数と演算回路を用いて,GNNの表現率の正確な対応性を確立する。
その結果,ネットワークのアクティベーション機能は回路のゲートタイプとなる。
この結果は、全ての共通アクティベーション関数に対して、一様かつ非一様に、一定深度回路とネットワークの族に対して成り立つ。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Graph Metanetworks for Processing Diverse Neural Architectures [33.686728709734105]
Graph Metanetworks(GMN)は、競合するメソッドが苦労するニューラルネットワークに一般化する。
GMNは,入力ニューラルネットワーク関数を残したパラメータ置換対称性と等価であることを示す。
論文 参考訳(メタデータ) (2023-12-07T18:21:52Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
対象関数のクラスは、一般化帯域制限関数とソボレフ型球である。
以上の結果から、乗法ニューラルネットワークは、これらの関数をはるかに少ない層とニューロンで近似できることを示した。
これらの結果は、乗法ゲートが標準フィードフォワード層より優れ、ニューラルネットワーク設計を改善する可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-01-11T17:57:33Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Learning Power Control for Cellular Systems with Heterogeneous Graph
Neural Network [37.060397377445504]
電力制御ポリシには異なるPI特性とPE特性が組み合わさっており,既存のHetGNNはこれらの特性を満足していないことを示す。
We design a parameter sharing scheme for HetGNN that the learned relationship satisfed the desired properties。
論文 参考訳(メタデータ) (2020-11-06T02:41:38Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic Neural Network (AlgNN) は、代数的信号モデルと関連する各層のカスケードで構成されている。
畳み込みという形式的な概念を用いるアーキテクチャは、シフト演算子の特定の選択を超えて、いかに安定であるかを示す。
論文 参考訳(メタデータ) (2020-10-22T09:10:16Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。