論文の概要: Binding-Adaptive Diffusion Models for Structure-Based Drug Design
- arxiv url: http://arxiv.org/abs/2402.18583v1
- Date: Mon, 15 Jan 2024 00:34:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:36:53.289349
- Title: Binding-Adaptive Diffusion Models for Structure-Based Drug Design
- Title(参考訳): 構造に基づく医薬品設計のための結合適応拡散モデル
- Authors: Zhilin Huang, Ling Yang, Zaixi Zhang, Xiangxin Zhou, Yu Bao, Xiawu Zheng, Yuwei Yang, Yu Wang, Wenming Yang,
- Abstract要約: 我々はバインディング適応拡散モデル(BindDM)という新しいフレームワークを提案する。
BindDMでは,タンパク質-リガンド相互作用に関与する結合部位の重要な部分であるサブ複合体を適応的に抽出する。
BindDMは、より現実的な3D構造を持ち、タンパク質標的に対する高い結合親和性を持つ分子を生成でき、最大5.92 Avg. Vina Scoreを持つ。
- 参考スコア(独自算出の注目度): 33.9764269117599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structure-based drug design (SBDD) aims to generate 3D ligand molecules that bind to specific protein targets. Existing 3D deep generative models including diffusion models have shown great promise for SBDD. However, it is complex to capture the essential protein-ligand interactions exactly in 3D space for molecular generation. To address this problem, we propose a novel framework, namely Binding-Adaptive Diffusion Models (BindDM). In BindDM, we adaptively extract subcomplex, the essential part of binding sites responsible for protein-ligand interactions. Then the selected protein-ligand subcomplex is processed with SE(3)-equivariant neural networks, and transmitted back to each atom of the complex for augmenting the target-aware 3D molecule diffusion generation with binding interaction information. We iterate this hierarchical complex-subcomplex process with cross-hierarchy interaction node for adequately fusing global binding context between the complex and its corresponding subcomplex. Empirical studies on the CrossDocked2020 dataset show BindDM can generate molecules with more realistic 3D structures and higher binding affinities towards the protein targets, with up to -5.92 Avg. Vina Score, while maintaining proper molecular properties. Our code is available at https://github.com/YangLing0818/BindDM
- Abstract(参考訳): 構造に基づく薬物設計(SBDD)は、特定のタンパク質標的に結合する3Dリガンド分子を生成することを目的としている。
拡散モデルを含む既存の3Dの深層生成モデルは、SBDDに大きな可能性を示しています。
しかし、分子生成のための3次元空間において、必須のタンパク質-リガンド相互作用を正確に捉えることは複雑である。
この問題に対処するため,バインディング適応拡散モデル(BindDM)という新しいフレームワークを提案する。
BindDMでは,タンパク質-リガンド相互作用に関与する結合部位の重要な部分であるサブ複合体を適応的に抽出する。
そして、選択されたタンパク質リガンドサブ複合体をSE(3)同変ニューラルネットワークで処理し、その複合体の各原子に送信して、結合相互作用情報による標的認識3D分子拡散生成を増強する。
我々は、この階層的複素-部分複素過程を相互階層的相互作用ノードで繰り返し、複素と対応する部分複素の間の大域的結合コンテキストを適切に融合させる。
CrossDocked2020データセットに関する実証研究によると、BindDMはより現実的な3D構造を持ち、タンパク質標的に対する高い結合親和性を持つ分子を最大5.92Avgで生成できる。
適切な分子特性を維持しながら、Vina Score。
私たちのコードはhttps://github.com/YangLing0818/BindDMで利用可能です。
関連論文リスト
- UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Autoregressive fragment-based diffusion for pocket-aware ligand design [0.0]
AutoFragDiffはフラグメントベースの自己回帰拡散モデルであり、ターゲットタンパク質構造に条件付けられた3D構造を生成する。
我々は、分子足場とタンパク質ポケットに固定された新しい分子断片の原子タイプと空間座標を予測するために幾何学的ベクトルパーセプトロンを用いる。
論文 参考訳(メタデータ) (2023-12-15T04:03:03Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
分子リンカ設計のためのE(3)等価な3次元拡散モデルDiffLinkerを提案する。
我々のモデルは、欠落した原子を中間に配置し、初期フラグメントを全て組み込んだ分子を設計する。
DiffLinkerは、より多種多様な合成可能な分子を生成する標準データセット上で、他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T09:13:37Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
本稿では,関係グラフアーキテクチャ内の3次元タンパク質-リガンド接触を符号化したグラフベース生成モデリング技術を提案する。
これらのモデルは、活性特異的な分子生成を可能にする条件付き変分オートエンコーダと、ターゲットの結合ポケット内の分子相互作用の予測を提供する配置接触生成を組み合わせる。
論文 参考訳(メタデータ) (2022-04-05T22:53:51Z) - Generating 3D Molecules Conditional on Receptor Binding Sites with Deep
Generative Models [0.0]
本稿では,受容体結合部位に条件付き3次元分子構造を生成する深層学習システムについて述べる。
生成原子密度から有効な分子配座を構築するために原子フィッティング法と結合推論法を適用した。
この研究は、ディープラーニングによるタンパク質構造からの安定な生物活性分子のエンドツーエンド予測の扉を開く。
論文 参考訳(メタデータ) (2021-10-28T15:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。