論文の概要: An assessment of quantum phase estimation protocols for early
fault-tolerant quantum computers
- arxiv url: http://arxiv.org/abs/2403.00077v1
- Date: Thu, 29 Feb 2024 19:08:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 19:16:45.050334
- Title: An assessment of quantum phase estimation protocols for early
fault-tolerant quantum computers
- Title(参考訳): 早期フォールトトレラント量子コンピュータにおける量子位相推定プロトコルの評価
- Authors: Jacob S. Nelson and Andrew D. Baczewski
- Abstract要約: 早期のフォールトトレラント量子コンピュータを対象としたいくつかの量子位相推定プロトコルを比較した。
我々はこれらのプロトコルを用いて水素分子の基底状態エネルギーを計算するのに必要な論理的および物理的資源を推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We compare several quantum phase estimation (QPE) protocols intended for
early fault-tolerant quantum computers (EFTQCs) in the context of models of
their implementations on a surface code architecture. We estimate the logical
and physical resources required to use these protocols to calculate the ground
state energy of molecular hydrogen in a minimal basis with error below
$10^{-3}$ atomic units in the presence of depolarizing logical errors.
Accounting for the overhead of rotation synthesis and magic state distillation,
we find that the total $T$-gate counts do not vary significantly among the EFT
QPE protocols at fixed state overlap. In addition to reducing the number of
ancilla qubits and circuit depth, the noise robustness of the EFT protocols can
be leveraged to reduce resource requirements below those of textbook QPE,
realizing approximately a 300-fold reduction in computational volume in some
cases. Even so, our estimates are well beyond the scale of existing early
fault-tolerance demonstrations.
- Abstract(参考訳): 我々は,初期のフォールトトレラント量子コンピュータ (eftqcs) を対象としたいくつかの量子位相推定 (qpe) プロトコルを,表面コードアーキテクチャにおける実装モデルの文脈で比較する。
我々は、これらのプロトコルを用いて分子水素の基底状態エネルギーを最小で計算するために必要な論理的および物理的資源を、論理的誤りを非分極化する存在下で10-3$原子単位未満の誤差で推定する。
回転合成とマジック状態蒸留のオーバーヘッドを考慮すると, EFT QPEプロトコル間では, 合計$T$-gate数が大きく異なることが分かる。
アンシラ量子ビット数と回路深さの削減に加えて、EFTプロトコルのノイズロバスト性を利用して、教科書QPEよりもリソース要求を低減し、計算量の約300倍の削減を実現することができる。
それでも、私たちの見積は、既存の早期耐障害デモの規模をはるかに超えています。
関連論文リスト
- Practical quantum advantage on partially fault-tolerant quantum computer [0.6449786007855248]
我々は、早期FTQCデバイスにおける実用的な量子アドバンテージを実現するための代替手法を提案する。
我々のフレームワークは、空間的オーバーヘッドを最小限に抑えるために、部分的にフォールトトレラントな論理演算に基づいている。
フレームワークの潜在能力を生かした,有望なアプリケーションをいくつか紹介する。
論文 参考訳(メタデータ) (2024-08-27T07:58:09Z) - Partially Fault-tolerant Quantum Computing Architecture with
Error-corrected Clifford Gates and Space-time Efficient Analog Rotations [0.5658123802733283]
NISQとFTQCのギャップを埋めるための量子コンピューティングアーキテクチャを提案する。
初期のFTQCデバイスでは、約1.72ドル 107ドル クリフォード演算と3.75ドル 104ドル 任意の回転を64個の論理量子ビット上で行うことができる。
論文 参考訳(メタデータ) (2023-03-23T11:21:41Z) - Averaging gate approximation error and performance of Unitary Coupled Cluster ansatz in Pre-FTQC Era [0.0]
フォールトトレラント量子計算(FTQC)は、雑音耐性のある方法で量子アルゴリズムを実装するために不可欠である。
FTQCでは、量子回路はフォールトトレラントの実装が可能な普遍ゲートに分解される。
本稿では,所定の量子回路に対するClifford+$T$分解誤差を非偏極雑音としてモデル化できることを提案する。
論文 参考訳(メタデータ) (2023-01-10T19:00:01Z) - A Remote Quantum Error-correcting Code Preparation Protocol on Cluster
State [5.5534193467961055]
ブラインド量子計算(BQC)プロトコルは、プライバシを保存するリモート量子計算を可能にする。
本稿では,クラスタ状態を用いたBQCの遠隔量子誤り訂正符号作成プロトコルを導入し,その盲点を測定ベース量子計算モデルで解析する。
論文 参考訳(メタデータ) (2023-01-05T10:13:52Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
キブル・ズレック機構は対称性の破れを伴う非平衡量子相転移の本質物理学を捉えている。
我々は、ランダウ・ツェナー進化の下で、最も単純な量子の場合、単一の量子ビットに対してKZMを実験的に検証した。
我々は、異なる回路環境とトポロジに埋め込まれた個々の量子ビットに関する広範囲なIBM-Q実験について報告する。
論文 参考訳(メタデータ) (2022-08-01T18:00:02Z) - Resource analysis for quantum-aided Byzantine agreement with the four-qubit singlet state [1.2094859111770522]
分散コンピューティングでは、ビザンツ断層(Byzantine fault)は、コンポーネントが不整合に振る舞う状態であり、システムの異なるコンポーネントに対して異なる症状を示す。
我々の研究は、量子通信プロトコルを多ビットの絡み合った状態に展開する上で重要な工学的側面を強調している。
論文 参考訳(メタデータ) (2022-07-11T15:17:58Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。