Dissipative stabilization of high-dimensional GHZ states for neutral
atoms
- URL: http://arxiv.org/abs/2403.00210v1
- Date: Fri, 1 Mar 2024 01:02:12 GMT
- Title: Dissipative stabilization of high-dimensional GHZ states for neutral
atoms
- Authors: Yue Zhao, Yu-Qing Yang, Weibin Li, Xiao-Qiang Shao
- Abstract summary: High-dimensional quantum entanglement characterizes the entanglement of quantum systems within a larger Hilbert space.
The high-dimensional Greenberger-Horne-Zeilinger (GHZ) state, symbolic of this type of entanglement, is of significant importance in various quantum information processing applications.
This study proposes integrating a neutral atom platform with quantum reservoir engineering to generate a high-dimensional GZ state deterministically.
- Score: 7.301613921876764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional quantum entanglement characterizes the entanglement of
quantum systems within a larger Hilbert space, introducing more intricate and
complex correlations among the entangled particles' states. The
high-dimensional Greenberger-Horne-Zeilinger (GHZ) state, symbolic of this type
of entanglement, is of significant importance in various quantum information
processing applications. This study proposes integrating a neutral atom
platform with quantum reservoir engineering to generate a high-dimensional GHZ
state deterministically. Leveraging the advantages of neutral atoms in a
modified unconventional Rydberg pumping mechanism, combined with controlled
dissipation, we achieve a three-dimensional GHZ state with a fidelity
surpassing 99\% through multiple pump and dissipation cycles. This innovative
approach paves the way for experimentally feasible, deterministic preparation
of high-dimensional GHZ states in Rydberg atom systems, thereby advancing the
capabilities of quantum information processing.
Related papers
- Quantum dimer models with Rydberg gadgets [0.0]
Rydberg blockade mechanism is an important ingredient in quantum simulators based on neutral atom arrays.
We propose a method to transform the underlying Rydberg blockade into more general constraints.
We show that these states can be dynamically prepared with high fidelity.
arXiv Detail & Related papers (2024-02-16T12:54:06Z) - Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors [20.335679096442604]
Greenberger-Horne-Zeilinger (GHZ) states play vital roles in the foundation of quantum physics.
We propose a general strategy for creating, preserving, and manipulating large-scale GHZ entanglement.
arXiv Detail & Related papers (2024-01-16T11:18:09Z) - Quantum dynamics of a fully-blockaded Rydberg atom ensemble [0.0]
We study an ensemble of strongly interacting atoms with permutation symmetry.
We apply this formalism to derive efficient pulse sequences to prepare arbitrary permutation-invariant quantum states.
Our results create new opportunities for the experimental and theoretical study of large interacting and nonintegrable quantum systems.
arXiv Detail & Related papers (2023-11-30T15:15:46Z) - Robustness of the projected squeezed state protocol [0.0]
Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing.
We simulate the generation of PS states in non-ideal experimental conditions with relevant decoherence channels.
Our findings highlight PS states as useful metrological resources, demonstrating a robustness against environmental effects with increasing qubit number N.
arXiv Detail & Related papers (2023-10-18T13:21:44Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - High-dimensional SO(4)-symmetric Rydberg manifolds for quantum
simulation [0.0]
We exploit the SO(4) symmetry to characterize the action of static electric and magnetic fields as well as microwave and optical fields on arrays of Rydberg atoms.
These arrays offer the opportunity to perform quantum information processing operations for qudit-based quantum computing.
arXiv Detail & Related papers (2022-06-02T15:47:36Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.