論文の概要: Blockchain Metrics and Indicators in Cryptocurrency Trading
- arxiv url: http://arxiv.org/abs/2403.00770v1
- Date: Sun, 11 Feb 2024 12:34:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:36:53.284003
- Title: Blockchain Metrics and Indicators in Cryptocurrency Trading
- Title(参考訳): 暗号通貨取引におけるブロックチェーンメトリクスと指標
- Authors: Juan C. King, Roberto Dale, José M. Amigó,
- Abstract要約: 本研究の目的は、暗号通貨市場での運用に役立つ新しい指標の構築である。
これらの指標は、ブロックチェーンネットワーク、特にBitcoinマイニングを構成するノードから得られる公開データに基づいています。
- 参考スコア(独自算出の注目度): 0.22940141855172028
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The objective of this paper is the construction of new indicators that can be useful to operate in the cryptocurrency market. These indicators are based on public data obtained from the blockchain network, specifically from the nodes that make up Bitcoin mining. Therefore, our analysis is unique to that network. The results obtained with numerical simulations of algorithmic trading and prediction via statistical models and Machine Learning demonstrate the importance of variables such as the hash rate, the difficulty of mining or the cost per transaction when it comes to trade Bitcoin assets or predict the direction of price. Variables obtained from the blockchain network will be called here blockchain metrics. The corresponding indicators (inspired by the "Hash Ribbon") perform well in locating buy signals. From our results, we conclude that such blockchain indicators allow obtaining information with a statistical advantage in the highly volatile cryptocurrency market.
- Abstract(参考訳): 本研究の目的は、暗号通貨市場での運用に役立つ新しい指標の構築である。
これらの指標は、ブロックチェーンネットワーク、特にBitcoinマイニングを構成するノードから得られる公開データに基づいています。
したがって、我々の分析はそのネットワークに固有のものである。
統計モデルと機械学習によるアルゴリズム取引と予測の数値シミュレーションにより得られた結果は、Bitcoin資産の取引や価格方向の予測において、ハッシュレート、マイニングの難しさ、トランザクション当たりのコストといった変数の重要性を示す。
ブロックチェーンネットワークから取得した変数は、ここでブロックチェーンメトリクスと呼ばれる。
対応する指標("Hash Ribbon"にインスパイアされた)は、購入信号の特定においてよく機能する。
この結果から、このようなブロックチェーン指標は、非常に不安定な暗号通貨市場において、統計的に有利な情報を得ることを可能にすると結論付けている。
関連論文リスト
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Interplay between Cryptocurrency Transactions and Online Financial
Forums [41.94295877935867]
本研究は、これらの暗号掲示板間の相互作用と暗号値の変動に関する研究に焦点をあてる。
これは、Bitcointalkフォーラムの活動がBTCの値のトレンドと直接的な関係を保っていることを示している。
この実験は、フォーラムデータが金融分野における特定の出来事を説明することを強調している。
論文 参考訳(メタデータ) (2023-11-27T16:25:28Z) - A Data-driven Deep Learning Approach for Bitcoin Price Forecasting [10.120972108960425]
本稿では,bitcoinの閉口価格を日単位の時間枠で予測するために,浅い双方向LSTM(Bidirectional-LSTM)モデルを提案する。
本稿では,他の予測手法と比較し,提案手法の助けを借りて,浅層ニューラルネットワークが他の一般的な価格予測モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-10-27T10:35:47Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Towards Measuring the Traceability of Cryptocurrencies [0.5371337604556311]
我々は暗号通貨の追跡可能性と匿名性を測定するための正式な枠組みを提唱した。
我々の研究は、暗号通貨のトレーサビリティを評価するための、最初の実用的で効率的で確率的な尺度を提供する。
いくつかの暗号トランザクショングラフに対して提案したトレーサビリティ尺度を実装し,広範囲に評価する。
論文 参考訳(メタデータ) (2022-11-08T14:08:39Z) - Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal
Link Prediction in Cryptocurrency Transaction Networks [1.6801544027052142]
ネットワークのリンク予測学習構造は,ネットワークのメカニズムを理解する上で有用である。
本稿では,1つの潜在因子依存型,非負性,乗算型,グラフ正規化型更新(SLF-NMGRU)アルゴリズムを提案する。
実際の暗号通貨取引ネットワークの実験により,提案手法は精度と計算効率の両方を向上することを示した。
論文 参考訳(メタデータ) (2022-08-03T08:58:59Z) - Pattern Analysis of Money Flow in the Bitcoin Blockchain [1.14219428942199]
本研究では, テントフローを抽出するために, テント解析に基づく手法を提案する。
テントフローの特徴付けにグラフ埋め込み法を適用した。
私たちの研究は、ソースアクターを分類する上で、マネーフローのトレースが有望なアプローチであることを証明しています。
論文 参考訳(メタデータ) (2022-07-15T07:15:16Z) - Token Spammers, Rug Pulls, and SniperBots: An Analysis of the Ecosystem of Tokens in Ethereum and the Binance Smart Chain (BNB) [50.888293380932616]
トークンと流動性のプールのエコシステムを調査し、両方のブロックチェーン間の類似点と相違点を強調します。
トークンの寿命を見積もると、約60%のトークンが1日以内でアクティブであることが分かりました。
我々は、出口詐欺の詐欺を提示し、両方のブロックチェーン上でその頻度を定量化する。
論文 参考訳(メタデータ) (2022-06-16T14:20:19Z) - Quantum-resistance in blockchain networks [46.63333997460008]
本稿では、ブロックチェーンネットワークにおける量子脅威を特定し、排除するために、米国間開発銀行、IDBラボ、LACChain、量子コンピューティング(CQC)、Tecnologicalo de Monterreyによる研究について述べる。
量子コンピューティングの出現は、非量子耐性暗号アルゴリズムを利用するため、インターネットプロトコルやブロックチェーンネットワークを脅かす。
論文 参考訳(メタデータ) (2021-06-11T23:39:25Z) - A Blockchain Transaction Graph based Machine Learning Method for Bitcoin
Price Prediction [8.575998118995216]
既存のbitcoinの予測は、主に簡単な機能エンジニアリングに当てはまる。
異なる範囲のパターンを明らかにするために,kオーダーのトランザクショングラフを提案する。
特徴を受け入れて価格予測を行う新しい予測手法を提案し, 異なる歴史時代の特定のパターンを生かした価格予測手法を提案する。
論文 参考訳(メタデータ) (2020-08-21T20:08:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。