論文の概要: Blockchain Metrics and Indicators in Cryptocurrency Trading
- arxiv url: http://arxiv.org/abs/2403.00770v1
- Date: Sun, 11 Feb 2024 12:34:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:36:53.284003
- Title: Blockchain Metrics and Indicators in Cryptocurrency Trading
- Title(参考訳): 暗号通貨取引におけるブロックチェーンメトリクスと指標
- Authors: Juan C. King, Roberto Dale, José M. Amigó,
- Abstract要約: 本研究の目的は、暗号通貨市場での運用に役立つ新しい指標の構築である。
これらの指標は、ブロックチェーンネットワーク、特にBitcoinマイニングを構成するノードから得られる公開データに基づいています。
- 参考スコア(独自算出の注目度): 0.22940141855172028
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The objective of this paper is the construction of new indicators that can be useful to operate in the cryptocurrency market. These indicators are based on public data obtained from the blockchain network, specifically from the nodes that make up Bitcoin mining. Therefore, our analysis is unique to that network. The results obtained with numerical simulations of algorithmic trading and prediction via statistical models and Machine Learning demonstrate the importance of variables such as the hash rate, the difficulty of mining or the cost per transaction when it comes to trade Bitcoin assets or predict the direction of price. Variables obtained from the blockchain network will be called here blockchain metrics. The corresponding indicators (inspired by the "Hash Ribbon") perform well in locating buy signals. From our results, we conclude that such blockchain indicators allow obtaining information with a statistical advantage in the highly volatile cryptocurrency market.
- Abstract(参考訳): 本研究の目的は、暗号通貨市場での運用に役立つ新しい指標の構築である。
これらの指標は、ブロックチェーンネットワーク、特にBitcoinマイニングを構成するノードから得られる公開データに基づいています。
したがって、我々の分析はそのネットワークに固有のものである。
統計モデルと機械学習によるアルゴリズム取引と予測の数値シミュレーションにより得られた結果は、Bitcoin資産の取引や価格方向の予測において、ハッシュレート、マイニングの難しさ、トランザクション当たりのコストといった変数の重要性を示す。
ブロックチェーンネットワークから取得した変数は、ここでブロックチェーンメトリクスと呼ばれる。
対応する指標("Hash Ribbon"にインスパイアされた)は、購入信号の特定においてよく機能する。
この結果から、このようなブロックチェーン指標は、非常に不安定な暗号通貨市場において、統計的に有利な情報を得ることを可能にすると結論付けている。
関連論文リスト
- Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning [1.3053649021965603]
本研究は,暗号通貨予測における感情指標の重要性に関する予備研究である。
我々は、Fear & Greedy Index、市場感情の指標、技術分析指標、および機械学習アルゴリズムの可能性を組み合わせることで、Bitcoin価格を予測する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-18T15:13:07Z) - Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFoundは、異常なブロックチェーントランザクション検出のためのカスタマイズされた基盤モデルである。
ブロックチェーントランザクションのユニークなデータ構造をモデル化するための、一連のカスタマイズデザインを紹介します。
BlockFoundは、Solana上の異常なトランザクションを高精度に検出する唯一の方法である。
論文 参考訳(メタデータ) (2024-10-05T05:11:34Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - A Data-driven Deep Learning Approach for Bitcoin Price Forecasting [10.120972108960425]
本稿では,bitcoinの閉口価格を日単位の時間枠で予測するために,浅い双方向LSTM(Bidirectional-LSTM)モデルを提案する。
本稿では,他の予測手法と比較し,提案手法の助けを借りて,浅層ニューラルネットワークが他の一般的な価格予測モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-10-27T10:35:47Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal
Link Prediction in Cryptocurrency Transaction Networks [1.6801544027052142]
ネットワークのリンク予測学習構造は,ネットワークのメカニズムを理解する上で有用である。
本稿では,1つの潜在因子依存型,非負性,乗算型,グラフ正規化型更新(SLF-NMGRU)アルゴリズムを提案する。
実際の暗号通貨取引ネットワークの実験により,提案手法は精度と計算効率の両方を向上することを示した。
論文 参考訳(メタデータ) (2022-08-03T08:58:59Z) - Token Spammers, Rug Pulls, and SniperBots: An Analysis of the Ecosystem of Tokens in Ethereum and in the Binance Smart Chain (BNB) [50.888293380932616]
トークンと流動性のプールの生態系を研究する。
トークンの約60%が1日以内でアクティブであることが分かりました。
1日間の暴走が2億4000万ドルという利益を生み出したと見積もっている。
論文 参考訳(メタデータ) (2022-06-16T14:20:19Z) - Quantum-resistance in blockchain networks [46.63333997460008]
本稿では、ブロックチェーンネットワークにおける量子脅威を特定し、排除するために、米国間開発銀行、IDBラボ、LACChain、量子コンピューティング(CQC)、Tecnologicalo de Monterreyによる研究について述べる。
量子コンピューティングの出現は、非量子耐性暗号アルゴリズムを利用するため、インターネットプロトコルやブロックチェーンネットワークを脅かす。
論文 参考訳(メタデータ) (2021-06-11T23:39:25Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump Cryptocurrency Manipulations [50.521292491613224]
本稿では,インターネット上のコミュニティによって組織された2つの市場操作(ポンプとダンプと群衆ポンプ)について,詳細な分析を行う。
ポンプとダンプの仕組みは、株式市場と同じくらい古い詐欺だ。今や、緩やかに規制された暗号通貨市場において、新たな活力を得た。
本報告では,ポンプ群とダンプ群に関する3症例について報告する。
論文 参考訳(メタデータ) (2021-05-03T10:20:47Z) - A Blockchain Transaction Graph based Machine Learning Method for Bitcoin
Price Prediction [8.575998118995216]
既存のbitcoinの予測は、主に簡単な機能エンジニアリングに当てはまる。
異なる範囲のパターンを明らかにするために,kオーダーのトランザクショングラフを提案する。
特徴を受け入れて価格予測を行う新しい予測手法を提案し, 異なる歴史時代の特定のパターンを生かした価格予測手法を提案する。
論文 参考訳(メタデータ) (2020-08-21T20:08:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。