An Ensemble Framework for Explainable Geospatial Machine Learning Models
- URL: http://arxiv.org/abs/2403.03328v2
- Date: Mon, 16 Dec 2024 18:27:52 GMT
- Title: An Ensemble Framework for Explainable Geospatial Machine Learning Models
- Authors: Lingbo Liu,
- Abstract summary: GeoShapley method integrates machine learning (ML) with Shapley values to explain the contribution of geographical features.
Here, an ensemble framework is proposed to merge local spatial weighting scheme with XAI and ML technologies to bridge this gap.
This framework works in both geographic regression and classification, offering a novel approach to understanding complex spatial phenomena.
- Score: 16.010404125829876
- License:
- Abstract: Analyzing spatially varying effects is pivotal in geographic analysis. However, accurately capturing and interpreting this variability is challenging due to the increasing complexity and non-linearity of geospatial data. Recent advancements in integrating Geographically Weighted (GW) models with artificial intelligence (AI) methodologies offer novel approaches. However, these methods often focus on single algorithms and emphasize prediction over interpretability. The recent GeoShapley method integrates machine learning (ML) with Shapley values to explain the contribution of geographical features, advancing the combination of geospatial ML and explainable AI (XAI). Yet, it lacks exploration of the nonlinear interactions between geographical features and explanatory variables. Herein, an ensemble framework is proposed to merge local spatial weighting scheme with XAI and ML technologies to bridge this gap. Through tests on synthetic datasets and comparisons with GWR, MGWR, and GeoShapley, this framework is verified to enhance interpretability and predictive accuracy by elucidating spatial variability. Reproducibility is explored through the comparison of spatial weighting schemes and various ML models, emphasizing the necessity of model reproducibility to address model and parameter uncertainty. This framework works in both geographic regression and classification, offering a novel approach to understanding complex spatial phenomena.
Related papers
- An Interpretable Implicit-Based Approach for Modeling Local Spatial Effects: A Case Study of Global Gross Primary Productivity [9.352810748734157]
In Earth sciences, unobserved factors exhibit non-stationary distributions, causing the relationships between features and targets to display spatial heterogeneity.
In geographic machine learning tasks, conventional statistical learning methods often struggle to capture spatial heterogeneity.
We propose a novel perspective - that is, simultaneously modeling common features across different locations alongside spatial differences using deep neural networks.
arXiv Detail & Related papers (2025-02-10T05:44:54Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Evaluation Challenges for Geospatial ML [5.576083740549639]
Geospatial machine learning models and maps are increasingly used for downstream analyses in science and policy.
The correct way to measure performance of spatial machine learning outputs has been a topic of debate.
This paper delineates unique challenges of model evaluation for geospatial machine learning with global or remotely sensed datasets.
arXiv Detail & Related papers (2023-03-31T14:24:06Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - Extending regionalization algorithms to explore spatial process
heterogeneity [5.158953116443068]
We propose two new algorithms for spatial regime delineation, two-stage K-Models and Regional-K-Models.
Results indicate that all three algorithms achieve superior or comparable performance to existing approaches.
arXiv Detail & Related papers (2022-06-19T15:09:23Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools.
The SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences and also relevant similarities.
The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.
arXiv Detail & Related papers (2021-11-13T01:50:36Z) - Modeling Massive Spatial Datasets Using a Conjugate Bayesian Linear
Regression Framework [0.0]
A variety of scalable spatial process models have been proposed that can be easily embedded within a hierarchical modeling framework.
This article discusses how point-referenced spatial process models can be cast as a conjugate Bayesian linear regression that can rapidly deliver inference on spatial processes.
arXiv Detail & Related papers (2021-09-09T17:46:00Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
This contribution proposes a novel approach that interprets machine-learning models through the lens of feature space transformations.
It can be used to enhance unconditional as well as conditional post-hoc diagnostic tools.
A case study on remote-sensing landcover classification with 46 features is used to demonstrate the potential of the proposed approach.
arXiv Detail & Related papers (2021-04-09T10:48:11Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Geostatistical Learning: Challenges and Opportunities [0.0]
We introduce the geostatistical (transfer) learning problem, and illustrate the challenges of learning from geospatial data.
Experiments with synthetic Gaussian process data as well as with real data from geophysical surveys in New Zealand indicate that none of the methods are adequate for model selection in a geospatial context.
arXiv Detail & Related papers (2021-02-17T14:33:15Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.