How to find optimal quantum states for optical micromanipulation and
metrology in complex scattering problems: tutorial
- URL: http://arxiv.org/abs/2403.03766v1
- Date: Wed, 6 Mar 2024 15:01:29 GMT
- Title: How to find optimal quantum states for optical micromanipulation and
metrology in complex scattering problems: tutorial
- Authors: Lukas M. Rachbauer, Dorian Bouchet, Ulf Leonhardt, and Stefan Rotter
- Abstract summary: We discuss how to make optimal use of both the spatial and the quantum degrees of freedom of light for characterizing and manipulating arbitrary parameters in a linear scattering system.
The aim of our tutorial is to bring different perspectives into alignment and thereby build a bridge between the different communities of wave control, quantum optics, micromanipulation, quantum metrology and vacuum physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interaction of quantum light with matter is of great importance to a wide
range of scientific disciplines, ranging from optomechanics to high precision
measurements. A central issue we discuss here, is how to make optimal use of
both the spatial and the quantum degrees of freedom of light for characterizing
and manipulating arbitrary observable parameters in a linear scattering system
into which suitably engineered light fields are injected. Here, we discuss a
comprehensive framework based on a quantum operator that can be assembled
solely from the scattering matrix of a system and its dependence on the
corresponding local parameter, making this operator experimentally measurable
from the far-field using only classical light. From this, the effect of quantum
light in the near-field, i.e., in the vicinity of the target object, can be
inferred. Based on this framework, it is straightforward to formulate optimal
protocols on how to jointly design both the spatial shape and the quantum
characteristics of light for micromanipulation as well as for parameter
estimation in arbitrarily complex media. Also the forces of the quantum vacuum
naturally emerge from this formalism. The aim of our tutorial is to bring
different perspectives into alignment and thereby build a bridge between the
different communities of wave control, quantum optics, micromanipulation,
quantum metrology and vacuum physics.
Related papers
- Tripartite quantum entanglement with squeezed optomechanics [3.1938039621723724]
We propose how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system.
The advantages of this system are twofold: (i) one can effectively regulate the light-mirror interactions by introducing a squeezed intracavity mode via the OPA; (ii) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely.
arXiv Detail & Related papers (2023-11-20T02:00:17Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Modelling Markovian light-matter interactions for quantum optical
devices in the solid state [0.0]
I analyze fundamental components and processes for quantum optical devices with a focus on solid-state quantum systems.
I make heavy use of an analytic quantum trajectories approach applied to a general Markovian master equation of an optically-active quantum system.
arXiv Detail & Related papers (2021-05-13T23:00:34Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Real-time optimal quantum control of mechanical motion at room
temperature [4.050112001048099]
We show real-time optimal control of the quantum trajectory of an optically trapped nanoparticles.
In combination with levitation, this paves the way to full-scale control over the wavepacket dynamics of macroscopic quantum objects.
arXiv Detail & Related papers (2020-12-30T15:14:11Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.